_/,

A Compiled Language for the PET/CBM Series of Computers

A Product of
Samurai Software
P.C. Box 2292
Pompano Beach, FL 33062

Copyright (C) 1981 by Tim Stryker

Contents

PART I1: GETTING ACQUAINTED WITH RPL .cececc . senseosacessccssccasns
Using RPL on Commodore COMPULELS cececcasosscocscocsscnsscsosna
The RPL Language S 8 0 0 008 00000 SO EN OO OO OUS OO OO OSSNV RN eSS OeEOES O

The Aritlimetic OPerators: +, by) *' /' and \ e v ssceceerevene
The Numeric-to-String Conversion Operators: str$ and chr$..
The Striilg-PUSh opefation ® @@ O 80 %9 00 08T ECGCWE O ®CT BCOOS 0SB O LTSN
Thé Output‘to‘Video Operator: print 36 0PCCO NS CEOEUNDNBEOOSIOGDS
The Comparison Operators: >, <, and = .(ceecsossvcecscssscesn
The Boolean Operators: and, 0or, and nNOt c.eceevceccsccvcencoescs
The Stack-Replicating Operators: #, 7, and T cvecossncsncace
The Stack=-Shuffling Operators: % @and $.cecevcccccssscsccscsce
The Poppers: L] and new ® 0 0 0 0 0 0 0S8 TS S OT GO S OO RO OO SO TE S5O eRS
The Byte-Interchanger: inNt seeeceseccoscsscscsscosesnsscorscse
The Memory-Access Operators: €, !, peek, and POKE csvveesoe
The Subroutine Operators: & and returN .ececececcecasnccsose
The Machine-Language AccesSsS Operators SYS ececsccccscscsses
The Unconditional--Control-Transfer (perator: gOtt ececoesoes
The Conditiconal~ciauge Qrerators: if, then, and end .svcceae
The Counting-Loop Operators: for, next, fn, and ¢lr .s.eeecs
The Random~Number-Generator Operator: rnd .c.cecessccececces
The Keyboard-Input Operators: get and inputcscescsccoe
The Execution-Termination Operator: €tOp cseeccsccvocccacce
symbols 'EEEENEEEENEEEEREENE NN NI B I A B A BN BN ECE B R B A I BRI R I S]
Using the Square BracketsS cecoescceccccsscssccccccccscscosccen
Commenting RPL PrOQramS .ccececccscocscccscsssccvssccccnansacnsa
Error Handling cececececcccccesccccrsecoccsacsscnsscscosansossns
Getting It All Together ® ® © @ 0 O O a0 6 OO O P SO G ST OO QT OB OO 6e
Examgle 1l: Two Forms of an Unsigned-Compare Routine
Example 2: A NumeriC-Input Routine esececescssscsssesccssnROsEe

OO 00 00 M ~J ~J ~ad b N

bt
coco

bt
NN

-
U W

NN NN
MNFONNUWL

23
23

Example 3: AjProgram Using Doubly-Nested For/Next Loops ... 24
Example 4: A RECUrSive ROULINE +evivnrnvoeecoenonanoneceaees 24
5: Comblnlng BASIC source with RPL SOULCE eveeeeses 25
6: Ah RPL Line-Renumbering Program in RPL 25
A Flnal Bit of Advice for the Newcomer to Computers .ececee.. 26

Example
Example

PART II.

S;ngle-
Spaces,

VANCED RPL TECHNIQUES (ietevvecncconcccsnosonanconese 28
Parentheses,.........'..ll"ll..ll........QII‘.I'..'...IO'.'I 28
Double-Quotes Appearing in Data Lists cesesecsstsctcncsscsccsse 28

}es .ﬂ...ll".-l..'.....l..."...l..........O....I.I 29

Ommas, apd BASIC KEYWOIdS ® 8 6 S S 0PSO O LSNP EOEEEOIBTOESESEDS 29

Compile=Time CONSLANES vevveseocnesevenesncsasacasseeaansnnas 30
The Bac%—ORG, and’ Undoing It seecececceccceeecscescesonnnsaes 30
Global SYMbOlS ceeeeecvsceoscncssssecersecnsonscccacssasscanase 31
The "Enter Object)Destlnatlon:" Prompt .eveecccccacvococcnces 32

lc,"Default“ 1..‘.....l'.l.‘..'...ll...lll.‘t"'l."‘....‘.l 32

2. "Con
3. "Rep
4. "Sou

5. "Comp"

6. "Fin

tlnue"v'P'.C.oo.000..."....00'0.0.'00'..."ooounonn 32

eat ® 0 00000 EL LN L OO LSOO C 0P OLEORNSOITEEESIOIREROEOSEOEOCTTSTOES 32

rce" LR AR LR B BN B A BN AN K BN 2K 2K BN B A B BE B0 Y B K BB R B N B B B R NN A A I Y 33

8 0 80080 CRE O OSSOSO ENEERIONSEETEEEERPOEECELIEPTENEOYEOIOETSLEE 33

al ® 0 0 8 300 000U PSS LOEL RN TSN TN PELETEReEESTIOICTOESOEEARRYEDN 34

7.ADeClmal Number ® 0 O 0 0L P CO LI PIOPON PO eSS BCOOPOESNOETEOEEOETOES 34
8. The NUll Response LECRC B I B A B B B A I AN A B B BB IE 2K B R B Y B B RN B A A B) 35
The "Enter Gbl Sym Tbl optlono" PrOmPt ® o060 e PP ROESIEPSIESIROEOECOTES 35

l. "Con
2.. "Cle
3. "Rep

tlnue" ® 9 0 00OV EORNATE OO EET SRS OO ESREE S 35

a-,t-" 0 0.0 000 000 E O SO0 RSO LLOERCCNSNCOSOERRPCEOSLEOIOCEECEPCSEECERNDOEDOTOTE 35

2

eat ® 0 0 00O E VOO PP OLLLO R OGN N e SRS EEOOOCOEERES OSSN OTSE 36

4.. 7. Dec;mal NUMDEr ceevensvecsscccoseccscsccoscscsassesconsnse 36
5. Thé Null RESPONSE eseeesssrecsssnssocsncscsscsssssasssss 36
Sav1ngﬁLpa¢ MOAQULES ceeevvscnceccccscncerseencccscoscccncannnes 36
Interfa01ng RPL £O BASIC .oceeccnconccnssescccsscscanssoesces 38

Associated Products

Append;x“A°
Append;x\Bq

Appendix D3

Appendix E:
Appendix F: .

® 8 0 8V @ O P 0B 00O L 0N L LN PSS E OO ELEORCROOOSNESTDOIECOLOE 40

"RPL/FOﬁTH DiffEreNnCeS ceeeceesococsncscsenceosanses 43

; Binary, Hexadecimal, and 2's Complement ..ceceeeeee 46
Appendix C: Compller EXror MeSSAQgES eeeeasececssccccsaccecncscss 48

Space and Time Information on RPL Operators 51
RPL Memgry USABUYE sceseocsccssosasscnsccssnssossssses 53

Gctcha~§ and Common Usage Errors Unique to RPL 55
Appendix G: GIobal "Symbols of Interest in Compileér ...cecces.s. 57
Appendix H: RPL Quick Reference Sheet ...csccccveccccceccncesss 60

jard Disclai

The imfdrﬁagion conéained in this manual has been thoroughly checked
and is believed to be entirely reliable. However, no responsibility
is assumed for inaccuracies. The material in this document is for

informatienal .purposes only, and is subject to change without notice.

BT N

o

PART I

GETTING ACQUAINTED WITH RPL

The RPL Compller is a facility designed to translate programs _
written in the RPL computer language into a form suitable for -
execution. Once a given RPL program has been translated by thls

compiler, it may be executed, or "run", any number, of times

There

1)

2)

3)

(And,

4)

5)

6)

are six main advantages that RPL has over BASIL. Ny

The speed of execution of a given RPL progdram w111 typlcally
be 6 to 12 times faster than the speed of the equ1, ént“‘
program in BASIC. - s

RPL programs tend to take up somewhat less memory'ﬁégce"%ﬁan
thelr equivalents in BASIC, wh1ch means that more bpace 1§

for longer programs.

d..,_‘u

RPL programs tend to need far less memory for’ storage;ﬂﬁ b
data than their BASIC equivalents, which again means- .
they leave more memory available for other uses.

»

for the advanced programmer:)

Structured-programming techniques are easier ‘to apply'in'RPL
due to its "push-down stack"™ orientation, convenient -
subroutining capability, nestable "if- then-else” constrqct,
and so on. ks

- J“‘["
RPL incorporates a number of desirable features fabiTItatlng
software development, including: the ability to speé
where in memory the program and its data are to regid e
use of "compile-time" symbolic constants, éymbollc“ Pl
subroutine names, symbol names of arbitrary lengtHf“éé%f
manipulation of pointers and data blocks, etc. e fi;'

L SIBLT.

The distinction between local and global symbol tapbles in
RPL permits separate compilation of program”sectlﬁnsf and
facilitates the development of true "subroutine Ifbraxies“
In addition, the symbol table format used 1S”fu11g so e
compatible with that used by the Samurai 6562 AsSémber and
debug packages, permitting both symbolic déﬁugglnq and
cross-referencing of symbols between RPL anﬁ asbﬁmbly :
language programs.)

S .
jasn THO

The disadvantages of RPL relative to BASIC are:

1)

2)

A given program in RPL will typically be more difficult to
write, and, once written, more difficult to read; " Ehan the
equivalent program written in BASIC. . ‘O;: i,
RPL does not have certain built-in functiofis that~BASicC
does, to wit: floating~point arithmetic, the trigonometric

functions, logarithms and exponentials, and IEEE device 1/0;
these functions may all be accomplished using RPL, but they
require some effort, whereas under BASIC they are available
via language "primitives".

The question as to whether RPL or BASIC should be used for a given
programming prOJect, then, will depend on circumstances. In
general, BASIC is better for "quick and dirty" jobs and jobs
1nvolving substantial amounts of higher mathematics, whereas RPL
is better fot''sophisticated general program development,
particularly where execution speed, memory space, and/or program
structure are of concern.

Unlike many packages of this type designed for the Commodore
product line, the RPL Compiler is designed to interfere as little
as possible with the normal operation of the machine. Once the
compiler module has been loaded and run, you are left in the
normal BASIC command environment, and may continue to use the
machine for the most part as though the RPL Compiler were not even
there. Then, when you are ready to enter an RPL program, you
simply type it in as though it were a new BASIC program, line
numbers and all. When you are ready to compile the program, you
simply enter the command "compile" and hit RETURN (this will cause
the compiler to ask you a couple of questions which we will come
to later). Once the program has been compiled, you may run it at
any time by simply typing in the word "go" and RETURN. The
program may be saved on disk or tape in the usual way at any time
through the use of the "save" and/or "dsave" commands, just as
though it yere a BASIC program. You may of course also load a new
BASIC or RPL’ ‘program at any time through the use of the "load"
and/or "dload" commdnds.

The net effect of ail this is that, once you have loaded and run
the compller moduléy you may load, list, edit, save, and execute
both RPL and BASIC’programs in any arbitrary sequence, the only
difference being that in order to execute a BASIC program you type
in "run" and RETURN, whereas to execute an RPL program you type in
"compile" and RETURN, answer the two questions it asks (which will
almost 1nvar1ably coensist of hitting RETURN tw1ce), and, when it
is done, type in ge“ and RETURN.

Let's run through a®short sample program in both BASIC and RPL to
get a feel for thisi First, load and run the compiler module,
which you do in exactly the same way you would load and run any
other program:

./

you type in ----> dload"*" (or 'load"*"' for cassette)
it comes back --> searching for 0:*
loading
ready. o
you type in ----> run
it comes back --> ready. Qs

(You may know of a shortcut for this procedure 1nvolv1ng *he nse
of the RUN/STOP key.) Now suppose you want to write a; program
which will create an interesting visual effect by; means,,of. .
POKE-ing random characters into random positions on the’ v1deo
display. You would enter the following BASIC proqram.¢;‘ ;i
10 poke 32768+rnd(1)*2000,rnd(1)*256

20 goto 10

To execute this, you of course just say "run", ané to sébp‘it, you
hit the RUN/STOP key. Now clear this program out of memory using
the "new" command, and enter the following program in its place:

10 test: rnd rnd 2000 \ 32768 + poke test goto

Now type in the word "compile™, hit RETURN, then hit RETURN twice
more. The lower portion of your screen should now look like this:

10 test: rnd rnd 2000 \ 32768 + poke test goto
compile B
rpl compiler (c) 1981 by tim stryker i
enter object destination: default 2 ;
enter gbl sym tbl option: continue y
0 errors: code goes from XxXXxx ($xxxx) to XXXXX ($xxRxY
ready. g

[

The program is now compiled; to execute it, type in "go" and
RETURN. Runs a little faster than the BASIC one did,- eh? - To stop
it, hit RUN/STOP. Clear the screen and say "go® agaln.' It does
the same thing. Stop it, do a "new", and say %¢go" again. Same
thing again, right? Note that once you have compiled an RPL
program you no longer need to keep the "source.code" for it around
(the source code is the stuff you get when you.say "list"). The
compiler has translated that source code into “objec* code", which
is stored elsewhere in memory (more about that.later).. Keep in
mind, though, that when you do a "save" or a "dsave".; vou are only
saving the source code. For now, in order to sxecute the program
again after having lost the object code (either by turning the
machine off or by compiling something else over it), you will have
to re-enter or reload the source from tape or disk, and then
re-compile it. Incidentally, note that loading and executing
other BASIC programs will not ordinarily destroy the object code
created during your last compilation. For example, you could now

load that first BASIC program for creating the visual display back
into memory, and switch back and forth between executing the BASIC
version and executing the RPL version by alternately issuing "run"
and "go" commands.

The RPL Language

RPL stands for "Reverse Polish Language". It is patterned after
the popular computer language FORTH, which also uses "Reverse
Polish Notation". RPL, however, embodies a number of advantages
over FORTH, among them more efficient use of memory and a much
friendlier user interface. For those who are interested, a
discussion of the main differences between RPL and FORTH is given
in Appendix A.

The term "Reverse Polish Notation" refers to a method of

specifying the order in which mathematical operations are to be

performed, pioneered by the Polish mathematician Jan Lukasiewicz

earlier this century. If you have ever used a Hewlett-~Packard

calculator, you have seen how this works. Suppose you want to

print out the result of adding 5 to 3. 1In BASIC, you would of

course simply write "print 5+3". Things are a little more N\
complicated in RPL, but with good reason: bear with me here.

In RPL there is something called a "parameter stack™, which can be
thought of as one of those tubes of lunch plates you see in
cafeterias all the time =-- you know, the kind with the spring in
the bottom, s¢ that when you put a plate on the top of the stack,
the rest move down a notch, and when you pull it back off, the
rest move back up. The idea behind the parameter stack is that if
you want to perform some operation on two numbers, you first put
the two numbers onto the stack, one after the other, and you then
say "plus!" or "minus!" or whatever the operation may be. What
happens then is that the two operands are "popped", or removed,
from the stack, and their sum or difference or whatever is then
pushed back cnto the stack. Thus, in RPL, to add 5 to 3, you
would specify that you want to push a 5, then push a 3, then add,
which you do by saying "5,3,+". When executed, this little
three-step "program" will leave an 8 sitting on top of the stack.

Now, having an 8 sitting on top of the stack is all very fine, but
in order to get this result printed out on the video display, you
have to do a little more. Specifically, you have to convert this
result into printable form, and then you have to actually ask for
the result of that conversion to be printed out. To do this, you
say "str$", which pops the number on top of the stack and then
pushes a character-string equivalent of it back on, after which
you say "print", which invokes a little program who expects to NI

find a character—-string on the stack, and who pops it off as he
prints it out. So: the RPL equivalent of BASIC's "print 5+3" is
"5,3,+,str$,print". One way to read this is: "push a 5, push a 3,
add them together, convert the result into ASCII, and print it
out”. In order to turn this into a real live program, you would
also have to place a line number at the start of the line. So,
the full program line which you could actually type in, compile,
and execute, if you wanted to, would be:

10 5,3,+,str$,print

(PET/CBM afficionados will undoubtedly gag at the sight of this
line, thinking that the space between the 10 and the 5 will be
ignored, leading to a line 105 which goes ",3,+,str$,print", Have
no fear. The compiler module includes some code that eliminates
this type of problem.)

Table 1 contains all of the valid RPL operators and a brief
description of what each one does. We will discuss each one in
some detail later, but we should go over the question as to how
data is represented in RPL first.

On the parameter stack, each piece of numeric data is represented
using sixteen base-2 digits, i.e., two bytes. This means that
integers ranging from -32768 up to 32767 can be conveniently dealt
with (this range may also be viewed as extending from 0 to 65535,
if desired, as long as you watch out for a few things we will come
to later). When negative, these numbers are represented using
"2's complement" notation. See Appendix B for an explarnation of
2's complement if you are not familiar with it -- it is basically
a very simple scheme whereby a negative one is represented by a
bit pattern of all ones, a negative two is represented by fifteen
ones followed by a zero, etc.

Character strings, which can contain any number of characters, are
represented a little differently. Each of the characters in a
string is allocated its own entry in the stack, and at the very
front of the string (in the topward direction on the stack), the
number of bytes in the string appears. For example, if you were
to push the string "hello" onto the stack, you would find that the
topmost stack entry is a 5 (the string length), the next item down
is a 72 (the CBM code for the letter "h"), the next item down is a
69 (CBM code for "e"), and so on until the sixth item down is a 79
(CBM code for "o"). Once a character string has been pushed onto
the stack, or has been created there by some cperator like "strs",
it need not be immediately printed out: if you want tc you may
manipulate the pieces of it using other ordinary stack operators,
just as you would any sequence of stack entries. In this way you
may mimic the BASIC operations of "lefts$", "rights$", string
concatenation, and the like. Conversely, there is nothing to

TABLE 1: The RPL Operators

(TOS means "Top Of Stack"; NOS means "Next On Stack")

T
%
$
new
int
@
!
peek
poke
&

return
sys
goto
if
then
end
for
next
fn
clr
rnd
get
input
stop

Description

Replace NOS with NOS plus TOS, pop TOS

Replace NOS with NOS minus TOS, pop TOS

Replace NOS with NOS times TOS, pop TOS

Replace NOS with NOS divided by TOS, pop TOS

Replace NOS with NOS modulo TOS, pop TOS

Convert TOS to a character string in base ten

Convert TOS to a character string in hexadecimal

Push character string as defined within quotes

Output the character string on TOS to video display
Replace NOS with logical NOS > TOS, pop TOS

Replace NOS with logical NOS < TOS, pop TOS

Replace NOS with logical NOS = TOS, pop TOS

Replace NOS with NOS Boolean-AND TOS, pop TOS

Replace NOS with NOS Boolean-OR TOS, pop TOS

Replace TOS with its 1's complement (invert bits in TOS)
Push another copy of TOS ("duplicate")

Push another copy of NOS ("over")

Replace TOS with the TOS-th deep stack entry ("N-th")
Swap NOS with TOS ("swap")

Rotate TOS-th stack entry out to TOS ("rotate")

Pop TOS ("drop") :

Pop everything on parameter stack

Interchange high- and low-order bytes in TOS

Replace TOS with 2-byte word that TOS points to

Store 2-byte NOS word at address on TOS, pop TOS and NOS
Replace TOS with single byte that TOS points to

Store single byte NOS at address on TOS, pop TOS and NOS
Call RPL routine whose address is on TOS, pop TOS
Return to caller

Call 6502-language routine whose addr is on TOS, pop TOS
Go to address on TOS, pop TOS

If TOS = 0, go to corresponding "then" or "end", pop TOS
Begin definition of else-clause for corresponding "if"
Define end of if-clause or else-clause

Start for/next loop, from TOS to NOS, pop TOS and NOS
End for/next loop

Push current for/next loop counter value

Clear out current for/next loop context

Push a random 2-byte quantity

Push a byte from the keyboard, or 0 if none available
Await input from keyboard; push character string result
Halt RPL execution, return to BASIC

N

prevent you from building your own strings from scratch if you
like: the program "10 79,76,76,69,72,5,print" will print out
"hello" like nobody's business. Try it.

Let's take a look at each of the classes of RPL operators now, in
detail.

s - *

These operators are all similar in that they combine the top two
items on the stack in some way, pop them both, and then push a
result. The order of the input operands, where it matters, is
always given by the rule: NOS gperator TOS. For example, to
divide 2200 by 3, write "2200,3,/"; to obtain the remainder from
that division, 2200 modulo 3, write "2200,3,\".

For the addition, subtraction, and multiplication operators, it
makes no difference whether numbers with their high-order bits set
are viewed as being in the range from -32768 to -1 or in the range
from 32768 to 65535. For division and modulo, however, it does
make a difference: the sequence "65535,5,/" will yield 0, not
13107. 1If you expect a dividend in a division or modulo operation
to exceed 32767, it would be best to do the operation in stages.
The result of a modulo operation, incidentally, will always be the
remainder left from the division of the absolute value of the
dividend by the absolute value of the divisor.

ic—to- . . .

Both of these operators pop the top stack entry and then push a
character string equivalent of it back on. Str$ is similar to its
namesake in BASIC in that the string it returns is in ASCII
decimal (base ten). The string is returned with no leading or
trailing spaces of any kind, and will appear as a negative number
if the high-order bit of the input argument is set. Chr$, on the
other hand, is nothing like its BASIC namesake: it returns a
four-character string representing the top stack entry in
hexadecimal notation (base sixteen). In case you are not familiar
with this notation, Appendix B contains a brief explanation of it.
Note, incidentally, that the true RPL equivalent of BASIC's chrs$
function consists of nothing more than pushing the number 1: this
will convert a number into a one-character string suitable for
printing.

The Strina- | .
It is frequently useful to be able to simply push a literal

character string directly onto the stack for use in labelling
output, prompting for input, etc. This is done by enclosing the
string in double-quotes: just as in the case of the numeric push,
by simply calling out the entity in question, you are understood
to be asking for it to be pushed onto the stack. The only
limitation on strings pushed in this way is that they may not
contain the double-gquote symbol. If you need to push this symbol
you will have to push it in numerical form (CBM code 34).

This is one we have seen before. It looks at the top stack entry
to determine how many characters to print out, then pulls that
many characters off the stack, one by one, and outputs them to the
screen, It does not output a carriage-return automatically when
it is done: if you want a RETURN output, incorporate an ASCII 13
into your string before outputting. "Print" only considers the
low—-order byte of each of the stack entries composing the string,
in case that makes any difference. Also, in case you are
wondering, it will handle the null string, a zero on TOS with
nothing after it, by simply popping the zero and not printing
anything. 1In any event, it always pops the entire input character
string before returning. '

e Compariso £ : < =

These operators are most commonly used in conjunction with the
"if" operator, although, as in BASIC, their results may also be
used in computations. What they do is to apply the specified
relation to the top two stack entries, popping those entries, and
pushing in their place a -1 (bit pattern of all ones) if the
relation holds true between them; otherwise pushing a zero. Where
order matters, the rule is always: NOS gperator TOS; for example,
"4,7,>" will yield a zero, whereas "4,7,<" will yield a -1.

The > and < operators will consider any number with its high-order
bit set to be negative, so if you wish to treat these numbers as
being in the range from 32768 to 65535, you will have to watch out
for this. For example, the sequence "60000,3,>" will yield a
zero. See the "Getting It All Together"™ section of this manual
for an example of an unsigned compare routine.

The Boolean Operators: and, or, and not

The "and" operator performs a bitwise Boolean AND of the top two
stack entries, pops them, and pushes the result. This means that
in any bit position in which both TOS and NOS have a 1, the result

will have a 1; all other bit positions in the result will contain
0. This is primarily useful for combining results of comparisons;
for example, suppose we need to form a logical quantity (either -1
or 0, signifying true or false) which is true if and only if the
quantity now on the stack is both greater than 47 and less than
58: we could write "# 47 > ; 58 < and" (see below for explanations
of the "#" and ";" operators).

Boolean OR works much the same way, except that when the TOS and
NOS are OR'ed together, each bit position in which either TOS or
NOS (or both) has a 1 will yield a 1 in the corresponding bit
position in the result. Only bit positions in which both TOS and
NOS contain zeroes will produce bit positions containing zeroes in
the result.

The "not" operator simply complements, or inverts, each bit in the
TOS. This is primarily useful for inversion of logical quan-
tities, such as the result of a comparison for equality.

All three of these operators pick up an item from somewhere in the
stack and make a new copy of it on top of the stack. "#"
(pronounced "dupe", short for "duplicate") picks that item up from
the existing TOS itself: the sequence "14,#" yields two 1l4's, the
original one being now the NOS, the new one being the T0S. ";"
(pronounced "over") picks up the NOS and pushes a new copy of it:
the sequence "9,5,;" will yield a 9 as TOS, a 5 as NOS, and the
original 9 as the third item deep in the stack. Both "#" and ";"
are simply shorthand forms of the general operator "1"

(pronounced "n-th"), which uses the TOS as an index into the stack
to determine which item there to pick up. The sequence "1,1" is
equivalent to "#"; "2,T" is equivalent to ";". To get a fresh
working copy of the next item down past NOS, you need simply say
"3,T", and so on.

ck= i H

From time to time you will reach a point at which you need to
interchange the top two stack entries in preparation for a
subtraction, a division, or some other purpose: the "g%"
(pronounced "swap") operator will accomplish this for you. Occa-
sionally, you will also wish there were some way to effectively do
an n-th and at the same time collapse the stack to remove the item
accessed —— to, in a sense, "rotate"™ a given item, perhaps deep in
the stack, up to the TOS position. Well, there is, and the "s$"
(pronounced "rotate") operator is the key to it. It is used much
like the "1" operator: the sequence "2,$" is equivalent to "&";

- 10 -

to rotate out the third item deep, you say "3,$", and so on.

The Poppers: . and new

It is frequently useful to be able to simply pop an item off of
the TOS without doing anything further to it. This is accom~
plished by saying simply "." (pronounced "drop", or "pop", as you
please).

Somewhat less frequently you may find that you need a way to clear
off the entire parameter stack, without knowing exactly how many
items there are in it at the time. The "new" operator will do
this for you.

IThe Byte-Interchanger: int

The 6502 microprocessor, which the PET/CBM series uses, has a
‘peculiar standard method for dealing with double-byte data. When
stored in memory, a double-byte quantity is almost always stored
with the low-order byte of the quantity in the lower of the two
addresses. RPL conforms to this standard as well, but there are

- occasions when the opposite order is desired. 1In order to deal
with these occasions, you will need the "int" operator, which
simply interchanges the two bytes constituting the TOS. For
example, the sequence "513,int"™ will yield a 258: the 513 consists
of two bytes, the high-order byte containing a-2 and the low-order
byte containing a 1; by interchanging these we get a high-order
byte of 1 and a low-order byte of 2, which is 258 in decimal.

- S

These operators constitute the primary means whereby information
is transferred back and forth between the stack and main memory.
"@" treats the TOS as a pointer to a 2-byte quantity in memory
(stored low-order byte first), and replaces that pointer with the
data it points to. "!" (pronounced "store") takes the NOS and
stores it into the two bytes pointed to by the TOS, popping them
both in the process. The low—order byte is stored into the lower
of the two addresses, as you would expect.

Peek and poke work identically to "@" and "!", except that only
the low~order byte of data is involved. Peek fetches only one
byte from memory, filling the high-order byte of the result on the
stack with zeroes, while poke stores away only one byte, ignoring
the high-order byte of the NOS.

Ordinarily, the address operands to all four of these operators

- 11 -

will be referenced symbolically in your source code:
symbol-handling techniques will be covered at the end of this
section.

The Subroutine Operators: & and return

The key to "structured programming" is a powerful and convenient
subroutining capability. RPL supplies this capability in the
following form: the address of the routine to be called is brought
to the TOS, and the "&" (pronounced "call") operator is invoked.
"s" pops the TOS and uses it as an address to transfer control to.
It also places the address of the "&" itself on a new stack we
haven't talked about yet, called the "return stack". The return
stack is much less accessible to you than the parameter stack is,
and for the most part you need not even be aware it exists.
However, it is needed so that the next time a "return" operator is
executed, control can pick back up at the point following the last
call. Rather than giving a example here of the use of a
subroutine, let's wait until we have discussed the uses of
symbols, which are indispensable to this purpose.

Parameters may be passed to the called routine either on the
parameter stack or through memory; to pass them on the stack you
simply put them there, put the routine address on top of them, and
say "&": when the called routine gets control its own address will
already have been popped, so the parameters it needs will be
sitting right there on top of the stack. Return codes of any kind
may be passed back to the caller in the same general way, either
on the stack or through memory. It is completely up to you
whether or not a routine pops the parameters passed to it before
returning ~- in general, it is a good idea for routines to do so,
but there exist circumstances in which a routine will want to
leave the passed parameters alone. 1In any event, neither "&" nor
"return" has any effect whatsoever on parameters passed in either
direction, so you will have to keep track of any passed parameters
yourself.

The Machine-Language Access Operator: sys

This operator is provided for the use of advanced programmers for
whom not even RPL is fast enough. Unless you have some knowledge
about assembly language and machine language on the 6502, you will
not need this operator (see Programming the 6502, by Rodnay Zaks,
or any of a number of similar books for more information on this
fascinating subject).

Like BASIC's "sys" command, this operator executes as a JSR to the
address specified. The address is taken from the TOS, and is

- 12 -

popped. Upon entry to the target routine, the Y register may be
assumed to contain 0, and the X register to contain a copy of the
stack pointer, as though a TSX instruction had already been done
for you by the time you get control. The RPL parameter stack is
the hardware stack. Thus, for example, the instruction "LDA
$103,X" will pick up the low-order byte of what had been the TOS
before you pushed the routine address and did the sys. If you are
planning to pass parameters back and forth on the stack between
RPL and machine language, keep in mind that your routine's own
return address will be foremost on the stack at the time it is
called.

Machine language routines may be constructed inline, semi
symbolically, through the use of parentheses and brackets (see the
routine "fndsym" in Appendix G for an example). If you are
thinking of writing substantial amounts of assembly code, though,
you would be well-advised to purchase the Samurai 6502 Assembler,
which includes all the usual goodies like precedence parsing of
expressions, macros, and conditional assembly, plus the same local
and global symbol table architecture as the RPL compiler. This
means that your RPL code and your assembly code can share symbols
in both directions; memory allocations may automatically be made
contiguous and non-overlapping, etc.

See Appendix E for information concerning memory locations
reserved for use by the RPL run-time package (and be careful not
to clobber them!).

- t - .

The bugaboo of structured programming, "goto" is nonetheless
useful in many situations. To use it, you simply place the
address to transfer control to (almost invariably referenced
symbolically) on the stack and say "goto". The address itself
will be popped, and execution of RPL code will pick up starting
with the byte at the specified address.

Any reasonable computer language needs a method of saying "if
such-and-such is the case, then do this, otherwise do that". 1In
RPL, the way you do this is by bringing to the TOS a quantity that
has the potential to be either zero or nonzero. Then, by invoking
the "if" operator, you are specifying that you wish the subsequent
code to be executed only if that quantity on TOS is nonzero. You
have two things you may do from.that point on: you may place the
"end" operator at the end of the section of code you want to make
conditional, in which case, if the argument to the "if" is =zero,

- 13 -

control will simply branch to that "end"; or, you may form an
"else-clause” by invoking the "then" operator, writing the clause,

.and placing the "end" at jits finishing point. For example,

suppose you wanted to print out either the word "zero" or tpe word
"nonzero”, depending on whether or not the quantity at TOS is or
is not zero. One way to do this would be to write:

if,"nonzero",print,then,"zero",print,end

A shorter way to achieve the same thing would be to say:
if,"nonzero",then,"zero",end,print

And the shortest way of all would be:
if,"non",print,end,"zero",print

RPL permits full nesting of conditional clauses (this means you
may have, say, one if-clause within another if's else-clause,
which itself is... and so on). Program line boundaries have no
effect on the scope of an "if", so you may construct arbitrarily
complex conditional clause structures, up to a maximum nesting
depth of 38, which should be sufficient for most purposes. The
only requirement is that every "if" must have a corresponding
"end", and vice versa; whether or not each one also has a "then"
is up to you.

It should be noted in passing here that "end" is not really an

operator —- it does not get translated into any actual object
code. It is what is called a "pseudo-op": a token that tells the
compiler something about what to do -- in this case, where to

cause control to branch to when the real operators "if" and "then"
are executed. But once your program has been compiled, any "end"s
you have in your code will take up no space, and will consume no
time during execution.

It is frequently useful to be able to set up a section of code
that will be repeatedly executed for a specified number of times,
the way one does in BASIC using a "for/next loop". RPL provides a
similar capability: by pushing the final value for the loop
counter, followed by its initial value, and then saying "for", a
loop will be set up such that the next time that the "next"
operator is encountered, a loop counter will be incremented and
control will pass back to the point immediately following the
"for"; this will continue to happen each time "next" is
encountered, until the loop counter reaches the final value
specified. For example, the sequence "5,1,for,7,str$,print,next"

- 14 -

will print out five 7's on the video display. 1In this example the
final value (or upper bound) for the loop counter is specified as
5, and the initial value (lower bound) is a 1, so the "body" of
the loop, the sequence "7,str$,print", will be executed five
times. The fifth time through, when the "next" is reached, the
loop will be "exited", and control will pass to the code following
the "next", whatever that is.

In the example above, no use was made of the actual value of the
loop counter. Suppose you were to want to achieve the effect of
the BASIC line "for i=-5 to -2:print i;:next". The RPL operator
"fn" causes the present value of the "innermost" loop counter
active to be pushed onto the stack, so in RPL you would write
"-2,-5,for,fn,str$,print,next". Loops may be nested (i.e., you
may have one for-next loop inside another, and another inside
that, if you like, etc.), so keep in mind that it is the value of
the innermost loop counter that is pushed by "fn". Loop counters
of outer loops are unavailable, unless you have had the foresight
to push a copy of their loop counters before entering the
innermost loop. See the "Getting It All Together" section of this
manual for an example of this.

It is sometimes useful to be able to exit a for/next-type loop
without completely exhausting the range of the loop counter. For
example, in BASIC, to search program memory for the first byte
containing a 37 you might say:

10 for i=1024 to 32767:if peek (i)<>37 then next

When this line finishes executing, i is equal to the address of
the first byte containing 37 or to 32768, whichever came first.
Moreover, if the search does find a 37, there is no requirement
for your program to "finish out" the loop, running i through the
rest of its range up to 32767. BASIC has a very complex internal
procedure for handling this kind of situation, and in fact this is
one of the sorts of things that makes BASIC so slow. To keep
things fast, in RPL you have to explicitly specify that the loop
will not be completed, in the event that this is the case. This
is not difficult: all you need to do is to invoke the "clr"
operator once you have decided not to "finish out" the loop. The
RPL equivalent of the above line of BASIC would thus be:

10 32767,1024,for,£fn,peek,37,=,if,fn,clr,then,next,32768,end

This program segment will leave either the address of the first
37, or 32768, whichever came first, sitting on TOS, and will leave
the return stack, which is where for/next context is stored, in
pristine condition. (Incidentally, in case this example raises
doubts in your mind concerning the claim that the use of RPL
yields code that is smaller as well as faster than BASIC's,

- 15 -

consider that the RPL object code in this case is 2l bytes long,
whereas its BASIC equivalent takes up 30 bytes, not counting
spaces or storage for the variable i. See Appendix D.)

This operator does nothing more than push a random 16-bit quantity
onto the stack. Each time it is invoked, a new random number will
be pushed -~ however, you should be aware that, viewed as bit
patterns, successive random numbers are not wholly independent of
one another: the algorithm used is of the shift-and-XOR class, if
that means anything to you. At any rate, the sequence will not
begin repeating itself until the 16,777,215th time around, and
when used in conjunction with the modulo function, as it almost
always will be, the numbers derived from it should appear totally
random.

- S

These two operators resemble their namesakes in BASIC very
closely. "Get" checks the keyboard input buffer, and, if anything
is there, pushes the first character in it onto the stack; if the
buffer is empty, it pushes a zero. Note that it does not push an
RPL-style character string (with length entry of 1), but merely
pushes the character itself, or, more precisely, its CBM code.
"Input” on the other hand puts the flashing cursor up on the
screen and waits for the user to type something in and hit a
carriage return, just the way BASIC's "input" does (RPL's "input",
however, does pot automatically print out a question mark). It
then takes the entire resulting string and pushes it onto the
stack. Note: due to the maximum stack capacity of 63 entries, if
an input string is over 62 characters long, stack overflow is
guaranteed. For applications in which this is a problem, you may
want to consider writing your own input routine using "get".

- 1 t'o .

This operator does exactly what you would expect: it terminates
execution of your RPL program and returns you to the BASIC command
environment. As is the case in BASIC, execution will also
terminate if control "falls off the end" of your code. (Be
careful when making use of this feature, though: if your program
allocates any memory for data storage, you must ensure that
execution will not pass through this data area on its way to
"falling off the end" of the program. This will become clearer
below in the section on symbols.)

16

Once RPL execution is terminated via "stop", it may not be
restarted again with the "cont" command, the way it can in BASIC.
See the "Associated Products" section at the end of this manual
for a description of the Samurai RPL Symbolic Debugger, which
gives you this capability, and can assist you in many other ways
as well.

- 17 -

Symbols
Consider the following BASIC program:

100 g$ = "do you want instructions? "

200 gosub 1000

300 if y then print"well, there aren't any."
400 g$ = "is your name fred? "

500 gosub 1000

600 if not y then print"then go away."

700 end

1000 print g$;

1100 get a$: if a$="" then 1100

1200 print as$

1300 if a$="y" then y = -1 : return

1400 if as$="n" then y 0 : return

1500 print"please hit either 'y' or 'n': ";
1600 goto 1100

Here we have a classic example of the use of a subroutine: the
portion of the program from line 1000 to line 1600 would have to
be written out twice, once between lines 100 and 300, and once
between lines 400 and 600, if the BASIC "gosub" command were not
used. In BASIC whenever you want to transfer control to another
portion of code, using either "gosub"™ or "goto", you always refer
to that portion of code by line number.

In RPL, you do not use line numbers. Instead, you label each
place in your code that gets branched to from someplace else with
a symbol, and then you refer to those places by means of the
symbol name. The way that you define a symbol is by stating the
symbol name, following it immediately with a colon. The RPL
equivalent of the above BASIC program would go as follows:

100 "do you want instructions? "
200 getanswer &
300 if "well, there aren't any." print 13 1 print end
400 "is your name fred? "
- 500 getanswer & .
600 not if "then go away." print 13 1 print end
700 stop
1000 getanswer: print
1100 waitforanswer: get # 0 = if . waitforanswer goto end
1200 13 ; 2 print
1300 # "y" . = if . -1 return end
1400 # "n" . = if . 0 return end
1500 . "please hit either 'y' or 'n': " print
1600 waitforanswer goto

18

This may look a little strange, but take it one step at a time.
Note that in lines 200 and 500, instead of saying "gosub 1000", we
are pushing the value of the symbol defined in line 1000,
"getanswer", and then invoking the "&" (call) operator. Similarly
in line 1600 instead of saying "goto 1100", we push the value of
"waitforanswer" and then say "goto". A similar effect applies in
line 1100 of both versions.

This example also gives us a chance to see parameter passing in
action. In the BASIC version, g$ was used to pass the. prompt
string to the subroutine, and y was used to return the indication
as to whether the answer was yes or no. In the RPL version both
of these functions are carried out directly on the stack. The
string-pushes in lines 100 and 400 of the RPL version get passed
to getanswer, which immediately prints them out; in lines 1300 and
1400 the numeric pushes occurring just prior to the "return"s are
what the "if"™ and "not" operators in lines 300 and 600 act upon.
The rest of the RPL version is pretty straightforward: all of the
#-ing and .-ing you see is just stack management, and will become
second nature to you after a while. Refer to Table 1 and the
operator descriptions if you have any trouble.

The other use of symbols for which a parallel exists in BASIC is
that involving variables. So far none of our examples has used
main memory for variable storage -- all of our data has been kept
on the stack. It is generally only necessary to store data off
the stack when you start getting into more complex applications,
so the following example may seem contrived. Take this BASIC
program:

10 get a$: if a$="" then 10
20 x = x+1
30 print x
40 goto 10

Every time you hit a key, this program spits out a count of how
many keys you have hit so far. Here is one way to write an RPL
equivalent:

10 awaitkey: get 0 = if awaitkey goto end
20 x @1 + x !

30 x @ str$ print 13 1 print

40 awaitkey goto

50 x: [0]

The first thing to notice about this is that there is an extra
line in the RPL version, line 50. Unlike BASIC, RPL does not
automatically allocate space for variables for you, so you have to
do it yourself. 1In fact, we can go further than that: the RPL
compiler has no idea of even what a "variable" is, in the sense

_19...

used in BASIC; instead, it allows you to allocate memory space,
and to apply labels to the space allocated. But it couldn't care
less what you use the space for -- you could use it for variables,
you could use it for pointers to other variables, you could put
programs in there and then branch to them, anything at all. The
way in which the symbol "x" in line 60 becomes associated with
that particular spot in the program is exactly identical to the
way in which the symbol "awaitkey" gets associated with the spot
it is in in line 20. The only difference is in how they are used.

By saying "x: [01" in line 60, what we are doing is allocating two
bytes worth of memory space, putting a zero into each byte, and
labelling the whole thing "x". Then, in line 20, when we say

"x @", what we are saying is, "push the value of the symbol 'x',
but instead of branching there, fetch the contents of the memory
location pointed to by this symbol, and put those contents on the
stack”. Once this has taken place, by saying "1 +" we are of
course incrementing the value on the stack, which happens to be
what was stored at "x". We then say "x !", which means, "push the
value of the symbol 'x' again, only this time, take what is
sitting on TOS and store it into the 2 bytes pointed to by the
symbol 'x'". The net effect of the whole sequence in line 20,
then, is that the contents of the 2 bytes stored in the location
labelled "x" are incremented: in a sense, this thing we are
thinking of as the "variable 'x'", is incremented, just as it is
in line 20 of the BASIC version.

In line 30 of the RPL version, we once again fetch the value
stored at "x" onto the stack, in order to convert it into a

decimal string and print it out (the "13 1 print" in line 30
simply prints a carriage return, in case you were wondering).

Now, this example brings out two important points relating to RPL
in general. The first is that you have to draw a distinction
between things that happen at "compile-time", and things that
happen at "run-time". The compiler is the entity that looks at
your source program and sees the "[0]l" in line 60: when it sees
that, it sticks the two zeroes in those locations, like we
discussed, and then goes about its business. Then, when you run
the program the first time, and you hit a key that is picked up by
the "get" in line 10, the program looks at x, finds a zero there,
increments it, and stores it back, etc. Now suppose you run the
program a second time without compiling the program again in
between. Nothing has come in to set the contents of x back to 0
again, s0 x will begin incrementing from wherever it left off the
first time around. So: unlike BASIC, which zeroes out your
variables for you each time you say "run", RPL does only what you
specifically tell it to do in the way of storing values into
labelled locations. To make the RPL version of our little program
here a true equivalent of the BASIC version, you would have to add

- 20 -

a line, say, 5, saying "0 x !", i.e. "store a 0 into the byte-pair
labelled 'x'".

The other important point this example brings out is that there is
a price you pay for the power that RPL gives you in being able to
treat program symbols and data symbols completely interchangably.
The price is that if you were to make a mistake in your program,
and, for example, say "x goto" at some point, RPL would blithely
follow along and begin doing all sorts of things that you had no
intention of. Depending on the circumstances, you could easily
end up "crashing" your machine, which means that you would lose
control of it, and would have to turn it off and back on in order
to regain control. Naturally, this means that any programs you
had had in memory at the time would be lost, unless you had
previously stored them on tape or disk. The moral of this story,
then, is: always make a backup copy of any sizable program you
type in before running it the first time, just in case you have
made a mistake along these lines. "A minute of prevention is
worth an hour of cure."

One more minor point on symbols: they must be composed entirely of
alphabetic characters. Unlike BASIC, FORTRAN, and the like, RPL
will misinterpret symbol names like "c8" and "wazoo22". There is
a good reason for this, which we will come to presently. 1In the
meantime, do not try to get RPL to accept symbol names containing
numbers.

Using the Sqguare Brackets

In the preceding section, you saw how to allocate two bytes for a
variable by following a symbol definition with "[0l1". This is a
special case of a very general and useful RPL feature that,
unfortunately, doesn't really have a name. The way it works is
that you may place any arbitrary list of numbers and symbol names
within brackets, and what happens is that the compiler will
generate that list for you in memory in simple numeric form, two
bytes per entry, resolving the symbols that appear, if there are
any. In effect this allows you to create predefined arrays of
various kinds with very little effort.

For example, suppose you needed a five-element array containing
the prices of five different brands of cement mixers for some
reason. In BASIC you would probably set this up as follows:

10 for i =1 to 5 : read cm(i) : next
2000 data 5000,6500,5995,5800,6350

In RPL all you would need to do is say:

- 21 -

2000 cmixprices: [5000,6500,5995,5800,6350]

This sets up a sequence of ten bytes in the object code (be
careful your program doesn't try to execute this sequencel), the
first two containing the number 5000, the next two containing
6500, and so on. To access these, all you need to do is to get
the index of the item you want, a number from 1 to 5, on the
stack, and say "1,-,%,+,cmixprices,+,@". The "1,-" decrements
your index to make it a number from 0 to 4, "#,+" doubles it to
make it a byte offset into the price table, "cmixprices,+" adds
that offset to the address of the first byte in the array, and "@"
then fetches the appropriate array entry.

Another good example of the use of brackets involves the RPL
equivalent of BASIC's "on...goto" and "on...gosub" commands. Take
the following BASIC subroutine for generating a random insult:

1000 on int(rnd(1l)*4)+1 goto 1010,1020,1030,1040
1010 print"you bohemian!"; : return

1020 print"take a long walk, off..."; : return
1030 print"drop dead!"™; : return

1040 print"what a bananal"; : return

One RPL equivalent would be:

1000 insult: rnd 3 and # + insulttable + @ goto

1005 insulttable: [insult_a,insult_b,insult_c,insult_d]
1010 insult_a: "you bohemian!" print return

1020 insult_b: "take a long walk, off..." print return
1030 insult_c: "drop dead!"™ print return

1040 insult_d: "what a banana!" print return

Here, instead of looking up an ordinary numeric quantity in an
array for purposes of arithmetic computation, we are looking up an
address. The application may be completely different, but the
underlying concept is exactly the same. (In case you are
interested, the underscore character, "_", appearing in the
symbols above is what most printers generate when they encounter
the PET/CBM back-arrow. RPL treats the back-arrow/underscore
character as alphabetic, so that those who like to make long,
descriptive labels using this character can do so. Maximum symbol
name length is virtually unlimited, and all characters in a name
are treated as significant. Practically speaking, lengths in
excess of 50 characters or so should be avoided, as they may
overflow the compiler's stack).

Commenting RPL Programs

Any reasonable computer language has to allow its user to place

- 22 -

comments (what BASIC calls "remarks") inline. The way you do this
in RPL is: you write one program line containing nothing but the
word "rem", then you write your comment in the following line or
lines, then you write another line also containing nothing but the
word "rem". Comments may be placed between any arbitrary pair of
lines: since comments take up zero memory space in the object
code, execution will pass through them as though they were not
there.

There is a neat little feature you may find handy here: if you
want to put a block comment at the beginning of your program, you
can do so without using a leading "rem". This is due to the fact
that the compiler actually compiles your program from bottom to
top. What you think of as the beginning of your program is the
last thing it looks at, so if it happens to be "reading comments"”
(or BASIC programs!) when it reaches the top of your code, what's
the difference? See below for examples.

Error Handling

A listing of all of the types of errors that the compiler detects,
along with an explanation of each, is found in Appendix C. These
are all errors that are detectable at "compile-time". It is
generally not advisable to issue the "go" command following a
compilation in which you have gotten one or more of these error
messages.

"Run—-time"” error checking has been almost completely eliminated
from the RPL package in order to keep the speed high and the
memory space requirements low. The only checks that are made
during execution are for parameter stack overflow and underflow.
The stack will overflow whenever you try to put more than 63 items
on it, and it will underflow if you try to pop or otherwise make
use of a stack item that isn't there. Both of these conditions
halt execution immediately, and give rise to the stack error
indication "pl!".

See the discussion of the Samurai RPL Symbolic Debugger in the
Associated Products section at the back of this manual for more
information concerning run-time error checking.

Getting It All Togetherp

You should now have enough information to get started writing your
own professional-quality RPL programs. Below are a few examples
covering applications in which the various features discussed
above work in concert with one another.

- 23 -

Example 1l: Two Forms of an Unsigned-Compare Routine

500 rem

510 this routine treats the two top stack entries as
520 unsigned quantities, pops them, and returns a -1
530 on the stack if the one in the "nos" position
540 was greater than the one in the "tos"™ position;
550 otherwise it returns a 0.

560 rem

570 usgt: # 0 < if ; 0 < if > then < end

580 then ; 0 < if < then > end end return
600 rem i ’

610 alternate, smaller form of the above

620 rem

630 smusgt: ; 32768 and ; 32768 and = if > return end < return

Example 2: A Numeric-Input Routine

10000 rem

10010 this routine expects a prompting string to
10020 be passed to it on the stack; it prints
10030 out the string, waits for keyboard input,
10040 and checks to see if the user entered a
10050 null response. If he did, it immediately
10060 stops; otherwise, it attempts to treat the
10070 input string as a number in decimal, and
10080 returns to its caller with one of two things
10090 on the stack, either: '
10100 <value of entered number> ... as "nos"

10110 0 ... as "tos"

10120 or:

10130 <original response string>...from "nos" down
10140 1 ..+ as "tos"

10150 (the latter applies in the event that the
10160 response string was not a valid decimal
10170 number.)

10180 rem

10190 inpdec: print input # 0 = if stop end

10200 0 ; 1 for fn 2 + 1

10210 48 - # 0 < ; 9 > or if clr . . 1 return end
10220 $ 10 * + next

10230 % 1 for ¥ . next 0 return

Example

100
110
120
130
140
i50
160
200
210
220
230
240
300
310
320
330
340
350
360
370

Example

4500
4510
4520
4530
4540
4550
4560

~ 24 -

3: A Program Using Doubly-Nested For/Next Loops

EEAXR KA AR KRR A AR AR KRR A AR R AR TR AR ARk kAT A h R kAR A %%k
* *
* this program prints out the multiplication tables *

* for products up to 9 * 9 , *
* *

hkkkkkhkhkkhhhkhkhkkhhkhkkdhkkhhkhkhkkhkhkkkhkhkhhhhhkhkkkkkhkhkhdkkhkhhdkk

rem

"k%*" print 9,1 for fn cvtdec & print next 13,1 print

"k%¥*" print 36,1 for "." print next 13,1 print

9,1 for fn cvtdec & . . . 2 print ":" print

fn 9,1 for # fn * cvtdec & print next . 13,1 print

next stop

rem

this routine converts the number on the stack into
a decimal string and then pads it on the left with
blanks so as to make a string exactly four charac-
ters long. Note: this routine will not work if the
input number is greater than 999.

rem

cvtdec: str$ 4 ¥ - 1 for 32 next 4 return

4: A Recursive Routine

rem

this routine replaces the quantity on "tos™ with
its factorial. Note that the largest factorial
less than 32768 is 7!, so this routine will not
work if the input on "tos" is greater than 7.

rem

factorial: # 1 - # if factorial & * then . end return

- 25 =

Example 5: Combining BASIC Source with RPL Source

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
NG 300

Example

1000
1010
1020
1030
1040
1050
.1060
1070
1080
1090
1100
1110
1120

rem the rpl portion of this program may be compiled
rem and executed just as if this basic portion were
rem not here...

poke 32768+rnd(1)*2000,rnd(1)*256 : goto 130

*

...and, at the same time, the basic portion of this
program may be run just as if this rpl portion

were not here! the "rem" in line 220 causes the
rpl compiler to treat the entire basic portion as

a comment, while basic never really has to deal with
the rpl portion due to the "goto 130" in line 130.

* % % % * X %

rem
test: rnd rnd 2000 \ 32768 + poke test goto

rem

* one word of caution: don't try this with a basic

* program that has a line in it with a "rem" standing
* by itself. the rpl compiler would then start
* trying to compile your basic program, which could
* cause it to become very confused.
rem
6: An RPL Line-Renumbering Program in RPL

you may have noticed that the rpl compiler pays
absolutely no attention to line numbers except for
the purpose of printing out error messages. Thus,
a line renumbering program for rpl source is
utterly simple: all it needs to do is to chase
through the line pointer chain, changing the line
numbers as it goes. this program renumbers
the lines of any rpl program in memory (itself or
any other) to start at 1000 and go up by 10's.

rem _

1025 start @ loop: ; @ if % ; ; 2 + !

@ $ inc @ + loop goto end stop

start: [1000] inc: [10]

- 26 -

inal Bit of Advice f |

Even though we have endeavored to be as clear and explicit in what
is written above as we can, there is still, no doubt, a fair
amount that went sailing right by you the first time around.

Don't let this bother you: try out a few of the examples until you
get the hang of it; then try modifying the examples a little.

When you start writing your own programs, start them off simple,
and upgrade them as you go along, testing what you have at various
points along the way. The RPL Compiler is no playtoy: in order to
get the speed and power of a language like this, certain
sacrifices must be made in terms of ease of use and freedom from
worry.

In the BASIC programming you have done up until now, BASIC has
always slapped your hand if you got it too near the fire... if you
went out of bounds on some array, or if you said "next" without
having first said "for", it told you so, in no uncertain terms,
and it pointed out the line you should look at to f£ind the
problem. But the price you paid for BASIC to hold your hand like
that was that many of the programs you wrote would execute at only
one-one-hundredth of the speed they might have executed at, had
they made full use of the power of the microprocessor in your
machine,

RPL does not by any means claim to offer you a hundred-fold speed
increase. It occupies a useful mid-range in the tradeoff between
ease of use and speed-efficiency, and offers you considerable
memory-space savings in the bargain. But there are many errors
you can make that RPL will not catch; many, even, that will drive
you to utter distraction as you try to ferret them out. If you
say "next" without having said "for", for example, the compiler
will not bat an eyelash: your program will simply go quietly
insane at the point where this happens, and the only indication
you will get that something went awry is the obscure bit of
gibberish "p!"™ -- and sometimes not even that.

But have faith when this happens, and don't go running to the
nearest bridge to throw the whole RPL package (or yourself) into
the drink... nobody ever said computers were trivial things to
master. Simply reset your machine by turning it off and back on
again, reload the compiler module and your source again, and trace
through your program by hand to see if you can tell where it went
wrong. If you decide after doing this that your program "has to
work™, that there is no way it could have done what it did, then
try explaining to someone else exactly why that is the case -- 80
percent of the time, in the middle of your explanation your eyes

- 27 -

will suddenly light up, you will go "aaah...haaaa...!", and, with
an entranced look, you will return to your computer to vanguish
the bug for good. The other 20 percent of the time, try inserting
some statements in your program to print out any suspicious
guantities at various points along the way. If the problem is
still no clearer after that, try isolating what appear to be the
offending routines: write a separate little test program to pass
known data to them and see what happens. Glance through Appendix
F from time to time... you might even try reading through the rest
of the manual again to see if there's something you missed. If
after trying various combinations of these approaches for days and
days on end, the program still won't work, may we suggest that you
try your hand at riflery, or automobile maintenance. You know
what they always say: "To err is human; to really foul things up
requires a computer.” '

- 26 -

inal Bit of Advice f |

Even though we have endeavored to be as clear and explicit in what
is written above as we can, there is still, no doubt, a fair
amount that went sailing right by you the first time around.

Don't let this bother you: try out a few of the examples until you
get the hang of it; then try modifying the examples a little.

When you start writing your own programs, start them off simple,
and upgrade them as you go along, testing what you have at various
points along the way. The RPL Compiler is no playtoy: in order to
get the speed and power of a language like this, certain
sacrifices must be made in terms of ease of use and freedom from
worry.

In the BASIC programming you have done up until now, BASIC has
always slapped your hand if you got it too near the fire... if you
went out of bounds on some array, or if you said "next" without
having first said "for", it told you so, in no uncertain terms,
and it pointed out the line you should look at to f£ind the
problem. But the price you paid for BASIC to hold your hand like
that was that many of the programs you wrote would execute at only
one-one-hundredth of the speed they might have executed at, had
they made full use of the power of the microprocessor in your
machine,

RPL does not by any means claim to offer you a hundred-fold speed
increase. It occupies a useful mid-range in the tradeoff between
ease of use and speed-efficiency, and offers you considerable
memory-space savings in the bargain. But there are many errors
you can make that RPL will not catch; many, even, that will drive
you to utter distraction as you try to ferret them out. If you
say "next" without having said "for", for example, the compiler
will not bat an eyelash: your program will simply go quietly
insane at the point where this happens, and the only indication
you will get that something went awry is the obscure bit of
gibberish "p!"™ -- and sometimes not even that.

But have faith when this happens, and don't go running to the
nearest bridge to throw the whole RPL package (or yourself) into
the drink... nobody ever said computers were trivial things to
master. Simply reset your machine by turning it off and back on
again, reload the compiler module and your source again, and trace
through your program by hand to see if you can tell where it went
wrong. If you decide after doing this that your program "has to
work™, that there is no way it could have done what it did, then
try explaining to someone else exactly why that is the case -- 80
percent of the time, in the middle of your explanation your eyes

\\/

- 29 -

enclosing the string in double-quotes and placing that between
either square brackets or parentheses. This can be very handy
for, among other things, forming predefined symbol tables for use
in decoding user responses via the "fndsym” and "dcdrsp" routines
globally defined in the compiler (see Appendix G). These strings
are formed with the leading byte being the string length, and the
string body following that.

Single-Quotes

If you write any programs that look at source entered via the
screen editor, you may need to form tables and whatnot containing
literal transcriptions of what the screen editor deposits in
memory when lines containing BASIC keywords are entered. The
compiler will take any material enclosed in single-quotes and copy
it directly, byte for byte, from the source to the object. 1In
case this strikes you as a frivolous feature and a waste of
memory, consider that it costs exactly four extra bytes in the
size of the compiler, and it makes programs like assemblers and
compilers for Commodore machines much more readable (which will be
a consideration if you ever decide to purchase the compiler
source) .

Spaces, Commas, and BASIC Keywords

You have presumably noted by now that both commas and spaces may
be used just about anywhere to separate RPL keywords from their
arguments, etc. What is not clear from the examples is that they
are not by any means required (in fact, it is the fact that they
are by and large not required that makes the compiler do 2 passes
instead of just 1). The reason all the examples in the first
section of the manual use them is that, if you don't, there are a
few little "gotcha's" you have to look out for, arising out of
certain things in the screen editor. 1If you have been using BASIC
for a while, you will be able to figure out what they are: "print"
or "input" immediately followed by "#" gets taken as a single
entity, and will get flagged by the compiler as an unresolved
reference; a reference to a symbol called "str" immediately
followed by "$" has the same problem, except that the compiler
won't even burp; in fact, contiguous references to any two symbols
which when concatenated form a valid BASIC or RPL keyword will
give strange results. If you wish to completely eliminate all
possibility of such problems, feel free to use as many spaces and
commas as you like; those who are more adventurous may cut down on
the size of their source considerably by compressing most of these
separators out, and almost never experience difficulty as a
result. Be aware if you do this, however, that there are certain,
obvious places where separators are required: between the

- 30 -

beginning of a symbol definition (not reference) and any
alphabetic material that may precede it on the same line (see
"unres ref", Appendix C); preceding a colon that has the function
of restoring the compiler's location counter to its previous value
(see below); and between an invocation of the subtraction operator
and the pushing of a literal numeric, if in fact the simple
pushing of a negative number is not desired.

Compile-Ti :

Most assemblers have a facility, generally a pseudo-op called
"EQU", which allows the programmer to assign an arbitrary value to
a symbol, whereas most high-level languages, even compiled ones,
don't. Well, being a sort of hybrid between assembly and
high-level languages, RPL does, but it has limitations. By saying
":symbol:<value>:", where <value> is always a literal numerijc
constant, you can assign the value to the symbol in such a way
that, anyplace you otherwise would have had to simply state the
literal numeric constant, you may substitute the symbol name
instead. For example, to get the first byte in the tape-2 buffer
onto the stack, you could say "826,peek™; or, you could say
"taptwobuff,peek", and, somewhere else in your code, say
"staptwobuff:826:".

| K—ORG 3 Undoi

The above compile~time constant defining facility is a special
case of a more general, and useful, feature. You recall that the
RPL Compiler compiles from back to front, bottom to top, whatever.
One reason it does this is that it is easier that way to build
code downward from some fixed upper boundary, as opposed to
building upward from some fixed lower boundary which is what BASIC
tends to do. When you specify to the compiler that you want
certain code or data placed into a particular spot in memory,
then, what you specify is the upper boundary you want that code or
data to be flush against. You do this using the colon character,
but you precede the colon with a literal numeric constant instead
of an alphabetic symbol (hence the restriction to all-alphabetic
characters in symbol names). When the compiler sees that what
immediately precedes the colon is numeric rather than alphabetic,
it says to itself, "Ah, this guy wants me to stop placing the
object code I generate where I have been placing it, and to place
all further code from this point on, until told otherwise,
extending downward from the point in memory whose address precedes
the colon." Note that nothing will get poked into the byte at the
specified address: the first poke, if there is one, will go into
the next byte below it. In assembly language, this type of
facility is generally available through a pseudo-op called "ORG",

- 31 -

and it affects code placement following the pseudo-op... this
facility affects code preceding the pseudo-op, hence the term
"back-ORG".

Now, ordinarily you are not going to want to have to worry about
where in memory your object code resides. In fact, the back-ORG
facility is primarily useful for defining compile-time constants,
or perhaps for setting up machine-language routines in the tape-2
buffer, that sort of thing. Hence it would be desirable for you
to have some way to tell the compiler, "Hey, I'm done doing this
thing that I did the back-ORG for: let's go back to wherever we
were before and start generating code there again." The way you
do this is by simply putting in a colon where you want this to
happen, making sure that the colon is immediately preceded by
neither an alphabetic nor a numeric character (pnor another colon,
as will become clear below). Now you can see how the compile-time
constant definitions work: reading backwards, you are saying
"back-ORG to such-and-such a place, define a symbol there, and
then restore the original location counter value."™ This
location-counter "stack", by the way, is only one deep: don't try
to back-ORG from within a back-ORG'ed region and expect two
standalone colons to get you back the original location counter.
Not that you would ever want to.

Global Symbols

To make a symbol global, all you do is define it using a
double~-colon instead of a single one. What this does for you is
that once you have compiled a program, or piece of a program,
containing symbols defined as global, those symbols may be
referred to from another program entirely that you compile later.
The only things you have to ensure in order for this to happen are
that (a) the object code of any routine you define globally does
not get clobbered before it is used (which you would ordinarily
accomplish by specifying the "continue” option in response to the
"enter object destination:" prompt when compiling subsequent
modules), and (b) that you preserve the contents of the global
symbol table from one compilation to the next (which you would
ordinarily accomplish by specifying the "continue™ option in
response to the "enter gbl sym tbl option:" prompt when compiling
subsequent modules).

A couple of minor points to remember when dealing with global
symbols: if a local symbol and a global one happen to have the
same name, the local one will override the global, i.e. the
address that the local symbol is defined at will be the one that
all of the references end up pointing to. Also keep in mind that
the globalness of global symbols is a one-~way affair: an
unresolved reference in one compilation cannot be resolved by

- 32 -

eventually defining the symbol in a subsequent compilation.

") ti : o N

In the discussion of the back-ORG above, it was mentioned that you
will ordinarily not want to have to get involved in determining
where in memory your object code is to go. On the other hand, you
do need a certain amount of flexibility in this respect, for
example: how do you ensure that one of your object modules does
not overwrite another when making use of the global symbol table
to link modules together? How do you create a final, saleable
product module (if that's what you're into) which does not contain
the compiler itself and all the other rubbish that your user is
not going to need? How can you compile a program that is too big
to allow you to keep both the source and the object in memory at
one time?

The answers to all these questions, and more, is found through
examining your possible responses to the "enter object
destination:" prompt. These are:

1. DEFAULT
This option always starts building your object just below
the lowestmost point of the compiler or whatever other
associated Samurai Software products you have installed in
your machine. Basically, the compiler and these associated
products start at the top of memory and grow downward, and
by specifying the default destination for your object you
simply continue the progression. This is of course the
option you should use unless you are doing something fancy,
which is why it is the default.

2. CONTINUE
This option starts building your object just below the
start-execution address of the previous module you compiled
(the reason we say the start-execution address and not the
lowestmost point is that your previously compiled module may
have done back—-0ORGes someplace). This is the destination
you should use for all but the first module in a series of
modules that you wish to link together using global symbols.

3. REPEAT
This option starts building your object exactly where it
started building it during the previous compilation. This
option only differs from the default if you specified
something other than "default" in the previous compilation:
in particular it is useful if, having compiled your first
module in a globally-linked series, you compile, say, the
second or third, only to find that they contain errors.

Y

- 33 -

Using the "repeat" option, you can correct the errors in the
source and recompile without losing the object modules you
had done so far in the series. The use of this option can
be a powerful aid in program development: you can write a
few routines, debug them, and make their entry points
global; then delete their source from memory and begin
working on the next level of routines, at the first
compilation saying "continue", then saying "repeat",
"repeat", "repeat", until you get the new ones right, at
which point... and so on. After all, why keep compiling and
recompiling fully debugged routines?

SOURCE

This option starts building your object right on top of your
source (the object will always take up much less space than
the source except in pathological cases). Use of this
option is one way to get around the problem of programs too
big to permit both source and object to fit in memory at the
same time (the other way is of course to break up the
program into smaller pieces and link them together using
global symbols). This option is a little dangerous in that,
when compilation is complete, if by mistake you tell BASIC
to list your program you could very well end up crashing
your machine. It is recommended that you immediately issue
the "new” command to BASIC upon completion of any
compilation using this option.

COMP

This option builds your object right on top of the compiler.
It should only be used when memory space constraints become
a real problem. It wipes out the compiler, but leaves the
global symbol table (and the Samurai RPL Symbolic Debugger,
if you have it) intact, so that you have the possibility of
doing debugging and/or continuing with a globally-linked
series. How do you continue with a globally-linked series
if the compiler has been overwritten, you ask? Good
question! The one thing you don't do is load in the next
module and say "compile". Instead, you use the address
limits shown upon completion of the first compilation to
create a load module on tape or disk using the TIM or a
"sys" to 63153 (see "Saving Load Modules" below). Then you
reload the compiler, except you don't reload from the usual
file, you load from the special file "justcplr" on the tape
or diskette supplied. This special file contains "just the
compiler”, i.e., it does not overwrite the global symbol
table, the way the usual compiler module does. Do a "new"

‘after loading "justcplr", then load in the next piece of

globally-linked program and say "compile", replying
"continue" to both prompts. When it finishes, repeat the
whole process for the next module, and so on. When the last

- 34 -~

module is done, load all your little object module pieces
back into memory, one after the other. Your complete object
module is now ready to go: say "go" or "simulate". If this
all sounds inordinately complicated, we ask you how else you
propose to create an almost-7K object module on an 8K
machine (or a 31K module on a 32K machine, etc.).

FINAL

This option builds your object right up flush against the
bottom of the RPL "run-time library", and represents truly
the limit in terms of memory space efficiency. This is the
option you would use to create a saleable object product.
The object module created through the use of this option has
nothing more in it than what is needed to execute it: no
symbolic debugger, no global symbol table, and no little
beast in the background for handling the "compile" and "go"
commands and keeping the screen editor from collapsing
program lines down to just one leading space, etc. 1If your
product does not contain any global symbol definitions or
references, you can simply compile it, specifying "final" as
your object destination (the compiler will not ask you about
what to do with the global symbol table). If your product
does make use of the global symbol table, things get a
little more complicated. When you give "final" as an object
destination, the reason that the compiler does not ask you
where it should put the global symbol table is that it knows
that the only place it capn put it is up on the screen.
Therefore you have to make sure, as you go through the
series, that the various commands you issue and the
machine's responses to them do not cause the screen to
scroll or the table to be overwritten, otherwise your global
symbols will get all messed up. "Going through the series"
of compilations is carried out essentially similarly to the
procedure under response 5, "comp", with the exception that,
after the first module piece is compiled, the little beast
that processes the "compile" command will be gone, so you
will have to "sys" to location 0 in order to fire up the
subsequent compilations. Note: this is the only
circumstance under which the compiler will affect the
contents of locations 0, 1, and 2, so your existing "usr"
functions for the most part do not have to worry about
getting clobbered. See below under "Saving Load Modules"”
for information on how to fire up the resultant complete
load module.

A Decimal Number

If, for some reason, none of the above will place your
object where you want it, you have the ultimate option of
simply specifying an address at which it should begin being
built. If the reply you give would place your object above

35

the "default destination™ point, it will automatically be
initially stored lower in memory and then moved up after
compilation is complete, the same way it is when the "comp"
and "final" destinations are specified. Please note that
you are only accorded this protection for code in your
program within the "default space", i.e. back-ORGed material
is poked as it is encountered during pass 2.

8. The Null Response
If you change your mind about wanting to run the compiler,
you can simply wipe out the "default" reply by spacing over
it, and hit RETURN: this will halt the compiler and return
you to BASIC. You can also of course halt the compiler at
any time by hitting the RUN/STOP key.

Much of the time, particularly when you are just getting
acquainted with RPL, you will not be using the global symbol
table, and you will not want to have concern yourself with what
might or might not be in it. On the other hand, when you are
using global symbols, you need to have some way to tell the
compiler when to clear the global symbol table out, when to leave
it alone, and when to ignore the symbols introduced into it during
the preceding compilation.

These functions are all available via the various responses you
can give to the "enter gbl sym tbl option:" prompt, which are:

1. CONTINUE
This option tells the compiler to leave the global symbol
table alone as it prepares for compilation, and to simply
continue adding global symbols to it during the present
compilation, if there are any. The reason this is the
default option is that ordinarily there won't be any, and by
saying "continue" here, you continue to preserve the global
symbols created during the compiler's compilation of itself
(see Appendix G). This is also the option you would most
likely use throughout any series of globally-linked
compilations.

2, CLEAR ‘
This option tells the compiler to clear out the global
symbol table in preparation for the present compilation.
This is the option you would use for the first compilation
of a globally-linked series, assuming none of the modules in
the series uses routines in the compiler, in order to allot
yourself the maximum amount of room in the table for your
own global symbols.

- 36 -

3. REPEAT
This option tells the compiler to, essentially, backtrack in
the global symbol table to the point the table was at at the
beginning of the preceding compilation, before proceeding
with the current compilation. This is the option you would
use in conjunction with the "repeat" response to the "enter
object destination:" prompt, if the module you had just
compiled contained global symbol definitions (if you
"repeat" the compilation without "repeat™ing in the global
symbol table, you will get the "duplicate symbol" error
message on each of the global symbols defined in the current
source) .

4. A Decimal Number
In case none of the above options will do, you can always
simply specify where in memory you want the top of the
global symbol table to be considered to be, by giving a
literal address in response to the prompt. There is only
one case we are aware of in which this is useful: the case
in which you need to put the global symbol table up on the
screen because your symbols overflow the space preallocated
for global symbol storage (see "symbol table overflow",
Appendix C). This case could have been covered by setting
up another option in this list called "screen" -- but come
on, everybody knows where the screen is: why waste memory?

5. The Null Response
If you change your mind about wanting to do the compilation
when you get this prompt, simply wipe out the "continue" by
spacing over it, and hit RETURN. Unlike the corresponding
action on the "enter object destination:" prompt, doing this
will leave certain pointers and whatnot in peculiar states:
keep in mind that if on the next compilation you specify the
"repeat" object destination, you will be repeating the
destination you gave in the present, aborted compilation (if
you don't use "repeat"™ the next time around, you should be
fine).

Saving Load Modules

Whether or not you do so for profit, you will probably, at some
point, want to make disk or tape copies of object code, so that
once you have debugged your programs you do not have to recompile

them every time you want to run them. This can be done in a
variety of ways.

The simplest is to get your program completely compiled, and then
make a load module extending from the lowestmost point of the
object you have created up to the upper limit of the memory in

- 37 -

your machine. If your machine has in it a ROM version containing
the TIM, this is very easy -- on the CBM 8032 or 4032, the
sequence might go something like this:

compile

rpl compiler (c) 1981 by tim stryker

enter object destination: final

0 errors: code goes from 29380 ($72c4) to 31531 ($7b2b)
ready. ' :

poke 634,0:sys 634 (there must be a better way!)

b* pc bullshit

.S "module name",<device #>,72c4,8000
X

ready.

Then, all you would need to do to load and run it is:

dload "module name" (or 'load "etc."' for cassette)
searching for 0O:module name :
loading

ready.

sys 32734

(Replace the sys to 32734 with a sys to 16350 on a CBM 4016 or
other 16K machine, or a sys to 8158 on an 8K machine -- these
addresses, incidentally, will not change from one release of RPL
to the next.)

This method has the advantage that you do not need to have
previously loaded and run the compiler module in order to run the
program. If you want to be able to run it by saying "run" instead
of sys to someplace, do a "new" after you have compiled it, then
write a line 10 containing the appropriate sys and save the whole
shooting works from 0400 up to the top of memory. Or, write a
little for-next loop to copy it down from high memory to just
above the BASIC code, make the BASIC code include a loop to copy
it back the other way before doing the sys, and save only from
0400 up to the top of the copy (be careful you don't overwrite the
for-next variable you're using to do the copy!l.

When making tape or disk copies of object module pieces during a
globally-linked series of compilations that started with an object
destination of "comp" or "final"”, save only the portion of memory
given at the completion of each compilation. The upper bound
indicated in the compilation completion message is actually one
greater than the address of the highest byte stored, so you can
(in fact, must) use this address as the upper-bound argument in
the save command to the TIM.

- 38 -

If your ROM version does not contain the TIM, then, as they say in
the trade, you got a problem. As far as we know, only the version
1l ROMs lack the TIM. With the version 1 ROMs, the following type
of procedure can be used (this example is on an 8K PET):

COMPILE

RPL COMPILER (C) 1981 BY TIM STRYKER

ENTER OBJECT DESTINATION: FINAL

0 ERRORS: CODE GOES FROM 5578 ($15CA) TO 6951 ($1B27)
READY. ’ ’

POKE 229,39 (low-order byte of $1B27)
READY, :
POKE 230,27 (high-order byte of $1B27)
READY.)
POKE 247,202 (low-order byte of $15CA)
READY. ;
POKE 248,19 (high-order byte of $15CA)
READY.
POKE 238,0 (a filename length of zero)
READY. ’
POKE 241,1 (ensures use of tape #1)
READY. ’
SYS 63153 (invokes the tape-save routine)
Interfacing RPL to BASIC

Sooner or later every RPL programmer wants to be able to write a
BASIC program that treats an RPL program as a subroutine. The RPL
"stop" operator acts as an unconditional stop, returning the
machine to immediate-mode BASIC, not to the calling BASIC program
-- how, then, can this be accomplished?

You might suppose that you could try making your RPL subprogram
sys to a machine-language routine that did a couple of PLA's and
an RTS when it wanted to return to its BASIC caller. You cannot:
one reason for this is that RPL ordinarily completely clears the
hardware stack when it fires itself up. This is done in order to
give your program the maximum stack space possible, and also in
order not to confuse novices who are using the RPL Debugger (they
would otherwise be forced to contend with the visual display of a
lot of crap on the stack that they didn't put there).

However, there is a way to disable this initial stack clearing
operation. The sys points mentioned above (32734 for a 32K
machine, 16350 for a 16K machine, and 8158 for an 8K machine)
contain code that loads Y with a 14 and then jumps to the main RPL
fire-up sequence. The first three bytes in the main RPL fire-up
sequence do a LDX with #255 and a TXS: this is what clears the
stack. So, all you have to do to disable this is to poke a new

- 39 -

jump address in at the point 3 bytes beyond your original sys
point, where this new jump address is 3 greater than the one that
was there before.

Having done this, your RPL program gtill cannot just RTS its way
back to BASIC, because RPL uses certain zero-pade locations in
strange ways, and it has to put them back the way they were. To
facilitate this, RPL opcode 233 has been provided: to return to
your BASIC caller, get the parameter stack back to its initial
state, and then cause execution to pass through a byte containing
a decimal 233. This is most easily accomplished using
parentheses: just put a "(233)" in the execution path where you
want this to happen. Alternatively, you could get a little
fancier by defining a symbol, say, "rts" with a value equal to
233, and then say "(rts)". Either way, RPL execution will
terminate, and BASIC execution will resume with the instruction
following the sys.

- 40 -

Associated Products

Samurai Software makes a number of associated software products,
designed to help you make the most of your investment in Commodore

hardware.

Among them are:

The Samurai RPL Symbolic Debugger Package

This package, invoked via the "simulate" command from BASIC,
allows you to debug RPL programs using an interactive,
"soft-key-driven" execution simulator. The keys used as
"soft-keys" are those in the numeric keypad, and a small matrix
of legends is kept constantly present in the lower right corner
of the screen, making the package extremely easy to use.
Features included are:

a)l

b)

c)

a)

e)

£)

g)

Constant display on the right-hand side of the screen of
the complete contents (up to 18 entries deep) of both the
parameter stack and the return stack as execution
progresses.

The ability to single-step through your RPL program at
any point, watching as data is added to and removed from
the stacks. The operator or operation to be executed on
the next step is displayed it i

(except for pushes and if-then—end operations) at all
times.)

The ability to set breakpoints in your RPL object and to
reach them via either a "fast-single-step" mode or a
straight "execute-until-hit" mode.

The option to suspend execution on any operation boundary
and to then proceed to edit both stacks, with full visual
feedback on the screen.

The ability to examine memory in hex and "dis-compiled
RPL" at any time.

The ability to specify addresses for use in break-
pointing, memory display, etc. in terms of arbitrarily
complicated expressions which may contain references to
symbols from both the global symbol table and the most
recently created local symbol table.

A host of extra run-time error checking functions, such
as checking for "next" without "for", "return" without
"g", return stack overflow, execution of illegal RPL
"opcodes”, and the like.

- 41 -

h) Vlrtually complete transparency of execution simulation:

i.e. the debugger uses no additional zero-page memory, no
tape buffer memory, and, of particular importance, it
does not interfere at all with the simulated program's
use of the video display (this is implemented via a
screen-memory swapping scheme).

The Samurai 6502 Assembler

This program takes 6502 assembly source input via the ordinary
screen editor, assembles it, and outputs either object to
memory or an assembly listing to printer or both. No printer
is required to make use of the package, although having one
certainly makes it nicer. It supports the standard MOS
Technology opcode and operand syntax, and includes the
following features:

a)l

b)

c)

a)

e)

£)

" " of expressions, including

modulo, exponentiation, and logical comparison operators,
up to 10 levels of parentheses, and quantities expressed
either symbolically or in hex, decimal, binary, or ASCII
form.

Symbol names up to 50 characters long, stored in

variable-length format for maximum space-efficiency
(symbol names may contain numeric characters).

The same local and global symbol table concepts used in
the RPL compiler, enabling the sharing of symbols between
the two languages with a minimum of effort, and
facilitating the generation of true gubroutine libraries

in assembly language.

Both ORG and "back-ORG" pseudo-ops, plus a default memory
allocation concept similar to that in the RPL compiler,
permitting easy integration of assembled routines with
both BASIC and RPL drivers.

Macro and conditional-assembly handling capabilities,
including the ability to place macros into the global
symbol table for use in more than one assembly.

A full array of pseudo-ops for such purposes as

controlling printer output, creating "dummy sections",
generating symbol value messages at assembly-time, and
the like.

- 42 -

The RPL Compiler Source Package

This product consists of a diskette containing the documented
source to the RPL Compiler and whatever other associated
Samurai Software products you may have (the price of the
package depends on what other products you have). You must
have a CBM 8032 in order to make use of this package.

Since the compiler is written in RPL, it can, and does, compile
itself. This product is offered to assist those individuals
who have the irrepressible urge to tinker: features may be
added to or deleted from any of the Samurai utilities using
this package. It may also serve as an aid to instruction for
those interested in learning more about compiler design for
small computers. Note that this package contains only the
compiler and associated products sources themselves, not a
great deal of explanatory material or the source to the RPL
"run-time library", the set of assembly routines actually
implementing the RPL operators.

43

Jix A: RPL/ iff

RPL and FORTH are similar in their use of RPN, their use of both a
parameter stack and a return stack, and their optimization for
structure, speed, and compactness. However, they differ in a
number of other respects. These differences arise primarily out
of differences in design approaches:

1.

FORTH object code is "threaded", whereas RPL object uses a
form of "p-code". This has resulted in RPL being
substantially better at conserving memory space than FORTH,
even though the two languages run at comparable speeds.

Most RPL operators take only a single byte of object space
to invoke, and most numeric push operations take up only one
or two bytes, whereas FORTH operators take up a minimum of
two bytes apiece, and a numeric push in FORTH frequently
takes up four full bytes. At the same time, preliminary
benchmarks indicate that, if anything, a given RPL program
will run slightly faster than its FORTH equivalent.

The RPL Compiler was designed specifically for the Commodore
series of computers, whereas FORTH was designed to be fairly
machine-independent. Thus, although FORTH is more highly
transportable, it is also inherently considerably clumsier
on Commodore machines. In particular, when using RPL you
also have the full power of Commodore BASIC at your
disposal, including the screen editor and all file I/O,
whereas FORTH takes full control of your machine, with its
own peculiar editor and its own special file I/0 functions
(which are not nearly as complete as BASIC's). Not only
does this mean that in order to use FORTH you have to learn
a whole new set of operating system command syntaxes, but it
also means that a fair amount of memory space is consumed in
the FORTH monitor duplicating capabilities which are already
present in the machine -- space which could certainly be put
to better use (like, for storing your programs, etc.).

FORTH is set up as a kind of hybrid interpreter/compiler,
which has definite implications in terms of the order in
which it must receive its source code statements. FORTE
forces you to enter code "bottom-up", and source listings
generated in the standard FORTH manner will always come out
with the lowest-level routines at the start of the listing,
proceeding down until the program's mainline is found at the
very end. RPL, being more of the usual type of straight
compiler, permits you to arrange your code more naturally,
with the mainline at the start, and with successively
lower-level routines found progressively later in the
listing. Even so, RPL does not force you into placing your

- 44 -

lower-level routines in any particular order -- as with
BASIC, FORTRAN, and the like, as long as the routines are
present in the compilation, they will be found.

FORTH's "threaded" object structure makes it inherently very
difficult to come up with a debugging package along the
lines of the one available for RPL... which is why no such
package is available for FORTH. RPL's "p-code-driven™"
object structure lends itself nicely to the possibility of
doing extensive automatic run-time error checking in a debug
mode while at the same time keeping run-time overhead at an
absolute minimum during normal running.

RPL recognizes that the one complaint users almost
invariably have about their systems is that they don't have
enough memory (this applies as much to the CBM 8000 series
user with 96K as it does to the PET-2001 user with 8K).
Thus it endeavors to give you the utmost functionality
possible in the memory you have. Unlike FORTH, it does not
require keywords, symbol references, and whatnot, to be
separated by spaces in the source; also unlike FORTH, it
allows both its own keywords and user symbol names to be
compressed by the BASIC screen editor, conserving both
source and symbol-table space. 1In addition, it supports
numerous schemes for dealing with memory space constraints,
including the local/global symbol table arrangement, options
to allow the object to overwrite either the source or the
compiler itself, and the option to place the global symbol
table on the screen if necessary.

FORTH implementations generally support some sort of
assembler embedded within the FORTH package itself. This is
a nice concept, but the assembler tends to be of marginal
utility since it uses a bizarre Reverse-Polish syntax for
the actual assembly instructions. RPL was designed to
interface easily with assembly language, but not to try to
incorporate an assembler: a normal, standard 6502 assembler
using the identical global symbol table structure as RPL is
available separately, if the user needs it.

Other differences between the languages are mostly minor
ones concerning differences in syntax. Here is a random
sampling of these:

a) In FORTH you invoke a routine by simply stating the name
of its entry point; in RPL you invoke a routine by
pushing the address of its entry point onto the stack and
then saying either "&" (call) or "sys".

b) FORTH has various pseudo-ops for declaring symbols to be
names of one- and two~byte variables, etc.; RPL treats
memory allocation more the way an assembler does, insofar

N4

c)

d)

e)

f)

- 45 =

as space allocated for variables is indistinguishable to
the compiler from space allocated for program.

FORTH's "do...loop" construct is similar to RPL's
"for...next" construct except that in FORTH the upper
bound specified is 1 beyond the maximum loop counter
value desired; RPL is more like BASIC in this respect.
FORTH implementations tend to support various flavors of
looping constructs like "begin...until" and
"while...perform...pend", whereas RPL does not (these
structures may all be implemented using different
combinations of RPL's "if...then...end" and "goto").

The FORTH operators for "top of stack duplicate", "swap
top two stack entries", and so on, are dgenerally intended
to be spelled out in the source, as "dup", "swap", etc.;
in RPL, because they are so frequently used, the source
representations of the stack-management operators are
single characters: "#" (dup), "%" (swap), etc. One of
these differences deserves special mention: FORTE's "."
operator means "print-numeric", whereas RPL's "."
operator is the same as FORTH's "drop" (RPL's "print"
operator is simply "print", available on CBM machines
through the "?" character).

FORTH uses parentheses to delimit comments; RPL uses
parentheses for array formation and other purposes, and
uses pairs of "rem"s to delimit comments.

46

Digital computers store all numbers, letters, and entities of
every kind in "binary", which is another word for "base two". 1In
binary, there are only two possible digits: one and zero. To see
how larger numbers are stored in binary, consider a number, say,
2058, in base ten. When you write "2058", you are really writing
an abbreviation for "2 times ten-cubed, plus 0 times ten-squared,
plus 5 times ten-to-the-first-power, plus 8".

Binary works the same way, except that the number the powers are
taken to is two instead of ten. For example, when you write
"]1101" in binary, you are writing an abbreviation for "1 times
two-cubed, plus 1 times two-squared, plus 0 times
two-to-the-first-power, plus 1", which is 8+4+0+1, or 13 in base
ten. The term "bit" is an acronym for "binary digit": it may be
used in referring to any quantity or piece of a quantity that can
take on only one of the two values zero and one. Many computers
(the PET/CBM series among them) commonly deal internally with
groups of eight bits at a time: the term "byte" refers to any one
of these groups of eight bits.

Computer "memory" is generally organized as a long sequence of
bytes. Each byte in the sequence has an "address", which is
nothing more than a position-number indicating how far the given
byte is from the beginning of the sequence. The byte with the
lowest address is at address 0, the next one is at address 1, etc.
You may think of addresses in any base you like, but at the lowest
level, like everything else in the computer, they are encoded in
binary. In the PET/CBM class of machines, addresses are sixteen
bits long, which means that, in base ten, they may extend from 0
up to 65535. (In case you are interested, the PET/CBM stores
special internal quantities in addresses 0 through 1023, and your
BASIC and RPL programs from 1024 on up. At address 32768, the
video display memory begins, and above that is the BASIC
"interpreter" program itself, along with the screen editor program
and various other things, which extend all the way up to address
65535.)

"Hexadecimal" is another word for "base sixteen", but it is more
useful to think of hexadecimal as a method for abbreviating
binary. 1In hex, each of the digits 0 through 9, and each of the
letters A through F, corresponds to one possible pattern of four
bits, as follows:

- 47 -

0000 = 0 0100 = 4 1000 = 8 1100 = C
0001 =1 0101 = 5 1001 = 9 1101 =D
0010 = 2 0110 = 6 1010 = A 1110 = E
0011 = 3 0111 = 7 1011 = B 1111 = F

Hex numbers are generally written with a dollar sign in front, to
distinguish them from "decimal", or base ten, numbers: thus, for
example, "$40C2" is simply shorthand for the binary number
0100000011000010. To convert from hex into decimal, you can think
of the hex "digits" A through F as representing the decimal
quantities 10 through 15, and make use of the fact that hex is in
fact base sixteen. For example, "$40C2" is "4 times
sixteen-cubed, plus 0 times sixteen-squared, plus 12 times
sixteen-to-the-first-power, plus 2", or 4*4096+0*256+12*16+2,
which is 16578 in decimal. Note that the highest address it is
possible to represent using sixteen bits is S$FFFF, which is
15*%4096+15*256+15*%16+15, or 65535.

When a group of sixteen bits is used to represent an address, the
above scheme is all well and good, because addresses are always
thought of as being positive numbers. Computations, however, will
frequently involve negative numbers. In "2's complement"
notation, bit patterns $0000 through S$7FFF are considered to
represent positive numbers, in exactly the manner shown above, but
bit patterns $8000 through SFFFF represent negative numbers. To
form a negative number using 2's complement notation, you start
with the representation of its absolute value in binary, you
"invert" all of its bits (i.e., you change all the ones to zeroes
and all the zeroes to ones), and then you add 1. For example, to
form what in decimal would be -12, you start with the
representation of 12 in binary (and let me use the hex
abbreviation for that): $000C. Now you invert every bit in it to
get $FFF3; then you add 1, and you have $FFF4, the 2's complement
representation of decimal =-12. This scheme effectively uses up
the "high-order", or leftmost, bit of each number to encode the
number's sign, plus or minus, so the range of possible positive
numbers under it is now only 0 through 32767 decimal. The range
of possible negative numbers becomes ~32768 through -1 decimal,
corresponding to bit patterns $8000 through S$FFFF.

- 48 -

: Jix C: Compil

BAD TOKEN "<x>" IN LINE <###>

This message indicates that an illegal "token" has been found
in the specified line. An illegal token may be something like
an arithmetic operator found within square brackets, or it may
be one of two BASIC keywords: "data" or "rem". Due to certain
peculiarities in Commodore's screen editor, RPL cannot allow
you to use the word "data" anywhere outside of comments, either
by itself or as a substring of another symbol. For the same
reason, it is illegal to use the word "rem" outside of comments
except to delimit the beginning and end of comment sections.
This need not be of concern to you, though -- the compiler will
tell you if you violate either of these rules. To fix the
problem, simply change your code so that the indicated illegal
token(s) do not appear, and recompile.

DUP SYM "<xyz>" IN LINE <###>

This message (short for "duplicate symbol") indicates that you
have attempted to define the specified symbol more than once.

A given symbol name may be referred to as many times as desired
in a program, but it may only appear once with a colon
immediately following it.

IF WITHOUT END IN LINE <###>

Each time you invoke the "if" operator, there must be a
corresponding "end" operator somewhere after it in your
program. RPL does not assume that you only want the remainder
‘ of the line the "if" is on to be made conditional, the way
| BASIC does. This message indicates that, compiling from bottom
to top, the compiler came across an "if" that it had not yet
seen the corresponding "end" for. To fix it, put an "end" at
the end of the portion of code you want made conditional upon
the result of the indicated "if".

ILLEGAL QTY IN LINE <###>

‘ This message indicates one of two things: either you have

! specified a literal number or symbol within parentheses which

1 is negative or larger than 255; or, you have attempted a

| backward symbolic reference within parentheses. Remember that
i parentheses call for single-byte storage of the quantities you
| specify: numbers that are negative or greater than 255 will not
| fit in one byte, and backward symbolic references require two

| bytes for pointer storage during pass 2 of compilation. To fix

- 49 ~

a problem of the first type, either truncate your number or
allocate space for it using brackets; to fix a problem of the
second type, move the symbol definition in question to some
point past the last place where you refer to it inside
parentheses.

MISSING) OR 1 IN LINE <###>

This message indicates that the compiler came across an
open-bracket or open-parenthesis in the middle of what it
thought was executable code. 1In all probability the way to fix
it is to indeed, put in the missing) or 1.

ODD QUOTE COUNT IN LINE <###>

This message indicates that an odd number of double- or
single-quotes was found in the specified line. Ordinarily,
this is just a typo -- fix the line and recompile.

SYMBOL TABLE OVERFLOW!

This message indicates that your machine does not contain
enough memory to hold your RPL source code, plus your RPL
object code, plus the compiler itself and whatever other
associated products you may have along with it, plus the local
and global symbol tables. It does not tell you which table
overflowed, but since the global symbol table cannot have
overflowed unless you pretty well knew what you were doing
anyhow, the expectation is that you will be able to figure out
which one it was. If you cannot, then it was the local symbol
table that overflowed. Possible solutions to local symbol
table overflow include: (a) buy more memory; (b) cut down on
the size of your source code by eliminating or shortening
comments, symbol names, etc.; (c) break up your program into
smaller modules and use the global symbol table to link them
together; or (d) specify that you want the object to overwrite
the source (reply "source" to the "enter object destination:"
prompt). Possible solutions to global symbol table overflow
include: (a) eliminate or shorten some of your global symbol
names; (b) use the "clear" global symbol table option for the
first compilation of your series; (c) put the global symbol
table up on the screen (reply "32768" to the first "enter gbl
sym tbl option:" prompt, and "continue" thereafter); or (d) buy
the Samurai RPL Compiler Source package and recompile the -
compiler itself to define a larger global symbol table.

THEN WITHOUT END IN LINE <###>

The meaning of this message is similar to that of the "if
without end" message above. Every "then" must be preceded by

- 50 -

its corresponding "if" and followed by its corresponding "end".
TOO FEW IF'S

This message, which can come only at the very end of
compilation, indicates to you that you have more "end"s than
"if"s in your program. The compiler has no way of knowing
where you intended to put the missing "if"(s), or whether
perhaps instead you typed in one "end" too many someplace.
This type of error is always lots of fun to resolve.

UNRES REF "<xyz>" IN LINE <###>

This message (short for "unresolved reference") crops up
whenever you attempt to refer to a symbol that is defined
neither in your program nor in the global symbol table. It
will generally be due to a typo in either the reference or the
symbol definition itself. If it is not, make sure that you are
defining the symbol properly, that is, that its definition does
not appear within a comment or enclosed in quotes or brackets.
Also, if the symbol definition does not appear at the beginning
of the line it is in, make sure that it does not directly abut
an alphabetic RPL keyword... e.g. "peeklabel:" will get taken
as defining a symbol called "peeklabel", not as a "peek™"
followed by a definition of the symbol "label".

- 51 -

The first column contains the operator or operation designation, the
second the amount of object code memory space it uses, in bytes. The
third and fourth columns give the best case and worst case execution
times, respectively, in units of milliseconds (thousandths of a
second). Testing was done on a machine with the Version 4 ROMs, and
the execution times shown include interrupt overhead, so they may
differ slightly for other ROM versions.

Oprtr Bytes Best (ms) Worst(ms) Remarks
+ 1 0.083 0.083
- 1 0.091 0.091
* 1 0.279 1.135 Smaller operand should be at TOS, worst
case when 31 > TOS > -31 is 0.554ms
/ 1 1.133 1.204
\ 1 1.126 1.192
str$ 1 3.070 3.257 3.030ms + 0.040ms per digit (+ 0.035ms
if negative)
chr$ 1 0.251 0.255)
"..." n+2 0.163 1.383 0.143ms + (20 * n)ms
print 1 0.066 2835.000 0.066ms + 0.214ms per character
+ 45.000ms per carriage return
> 1 0.093 0.097
< 1 0.109 0.113
= 1 0.082 0.093
and 1 0.080 0.080
or 1 0.080 0.080
not 1 0.074 0.074
1 0.078 0.078
H 1 0.081 0.081
T 1 0.094 0.094
% 1 0.173 0.173
$ 1 0.193 3.853 0.071lms + (61 * TOS)ms
. 1 0.061 0.061 ' ’
new 1 0.053 0.053
int 1 0.076 0.076
e 1 0.089 0.089
! 1 0.092 0.092
peek 1l 6.082 0.082
poke 1 0.083 0.083
& 1 0.089 0.089
return 1 0.082 0.082
sys 1 0.084 0.084 Time includes the RTS back
goto 1 0.059 0.059
if 3 0.149 0.149
then 3 0.116 0.116 Executed at end of if-clause
end 0 - - Compiler pseudo—-op

for
next
fn
clr
rnd
get
input
stop
push-6
push-15
push-16
(233)
(234)

HHWNRHERRRH M-

0.198
0.101
0.071
0.062
0.103
0.095

0.057
0.057
0.091

0.049

0.198
0.106
0.071
0.062
0.103
0.265

0.057
0.057
0.091

0.049

- 52 -

Not applicable

Not measurable

6-bit push (-1 < x < 64)

15-bit push (63 < x < 32768)

16-bit push (x < 0, or bkwd reference)
Special exit —-- not measurable

RPL no-op (unaccessible symbolically)

i3 2
-

5 j
N

- 53 -

Appendix E: RPL Memory Usage

Machine-language programmers will be primarily concerned about
memory utilization below address $0400. You may be relieved to
know that RPL in no way disturbs the contents of either tape
buffer at any time. 1In fact all of memory below $0400 is yours to
do with as you please, with 4 exceptions:

1) The hardware stack page, decimal addresses 256 through 511,
* is used for both the parameter stack and the return stack.
At no time should you try to use any portion of this page
outside the stack context (not that it is likely you would
want to).

2) The area in the zero page that BASIC uses for its "CHRGET"
routine is swapped out to high memory when RPL fires itself
up, and is swapped back when execution finishes. RPL needs
this 30-byte block for stack pointers, program counter, and
scratch memory for the various operators: you should never
try to poke anything in here. This region extends from 194
through 223 under the Version 1 ROMs, and from 112 through
139 under all the rest.

3) The BASIC input buffer is used at compile-time only for
- storage of the if-then-end stack (this is the 80-byte area
starting at address 10 under the Version 1 ROMs and at
address 512 under all others). RPL also uses it during
execution of your own program, but only during processing of
the "input" operator.

4) Last, and least, locations 0, 1, and 2, get clobbered by the
compiler only if you specify "final" as your object
destination., This is a one-time event: a couple of
milliseconds after you hit RETURN upon specifying "final" as
an object destination, these three bytes become a JMP to the
compiler's entry point, but that's it. At no other time
does any Samurai utility touch these three bytes.

Above $0400, things are not quite so simple. Because the compiler
and all of the other Samurai goodies are set up flush against the
top of memory, their exact addresses will depend on the size of
your machine. 1In addition, their sizes and precise layouts will
depend both on the ROM version you have and on the particular
collection of Samurai utilities you have purchased. 1In general,
the following is about all that can be said with any assurance:

a) The 2 bytes at the very top of memory will contain the start
address of the last thing you compiled.

b)
c)

d)

e)

£)

g)

h)

- 54 -

The 2 bytes just below that will contain the start address
of the debugger, if you have it in memory.

The 2 bytes just below that will contain the start address
of the compiler, if you have it in memory.

The 2 bytes just below that will contain the start address
of the assembler, if you have it in memory. This will also
be the address which will become the upper bound on your
object code when you compile something using the "default"
object destination.

The global symbol table, when not up on the screen, will be
located just above the debugger, and just below the RPL
"run-time library": its address bounds can be found as
discussed in Appendix G.

The local symbol table will always be located starting 14

bytes beyond the end of your source (this gives you room for

a couple of miscellaneous BASIC variables between the end of

your source and the l.s.t.). It grows upwards from there,

while your object grows downward from high memory. The

exact address bounds on the l.s.t. can be found as discussed k
in Appendix G. The l.s.t. and your BASIC variables are
totally unprotected from one another, but this will not
ordinarily present a problem.

MAXRAM (address 134 under the Version 1 ROMs; address 52
under all others) will always be automatically set either to
the start address of the last program compiled, or to the
assembler's start address, whichever is lower; thus, as long
as your BASIC programs do not specifically poke anything
above this limit, both they and your RPL programs will
continue to work fine without any need for tinkering on your
part.

The little sliver of memory between the end of the video
display and the end of the 1K or 2K of RAM implementing it
is used by the compiler for the little program that runs at
the end of every compilation, transferring the object from
where it has been built to where it is to be run (this is
only needed for object destinations of "comp", "final", and
the like). Therefore do not try to place object code
here... the rest of the screen is fair game, of course, and
can be amusing to build object code for.

L

- 55 -

. L] s

RPL represents a radically different approach to programming for
many people, so it is to be expected that "careless" errors will
crop up in the first few programs. This guide is intended to help
the newcomer out by presenting a list of things to watch out for
-- particularly those which RPL does not have in common with
BASIC.

FORGETTING TO RE-COMPILE AFTER CHANGING THE SOURCE

Interacting with RPL is so much like BASIC in many ways that it
may be difficult at first to remember to re-compile every time
you make changes to your source code. This can lead to very
perplexing situations ("But I'm gure I fixed that bug already
-- what is it doing back here again?"). Just try to remember
the cardinal rule of compiled languages: for purposes of
testing, a change to the program is not really made until it is
made to the object code -- changing the source is not enough.

SYMBOL NAMES INVOLVING DECIMAL DIGITS

Symbol names must be composed entirely of alphabetic
characters. An attempt to define a symbol called, for example,
"wazoo22", by sticking a colon after the name, will cause the
compiler to think that you want to "back-ORG" to location 22,
and to start building object code there. This can be
disastrous: depending on the circumstances, it can even "crash"
your machine, meaning that you will lose whatever you have in
memory at the time. Just remember to compose your symbol names
such that they are always entirely alphabetic, and you will be
fine.

"REM" OR "DATA" APPEARING IN A PROGRAM LINE

Although the compiler will catch this type of error, it can be
distressing because the use of either of these keywords can
give rise to a whole slew of associated errors on the same
line. If you happen to think of it, try not to choose symbol
names like "userdata™ and "remainder®, that is, names that have
either of these two strings embedded within them. If you do
forget, don't let it bother you that every line on which one of
these symbols appears gives you all kinds of strange error
messages: just look for the message that says 'illegal token
"rem"' or 'illegal token "data"'. Generally the only thing
wrong with such lines is the use of the indicated token: change
the symbol name everywhere it appears and compile again.

- 56 -

IMPROPER NESTING OF SUBROUTINES WITH FOR/NEXT LOOPS

A person accustomed to BASIC may take a while to get used to
the idea that all "for/next" loops must be "terminated" in RPL.
If this does not ring a bell, read back over the section on
"for", "next", "fn", and "clr" in Part I. Another potential
problem in this class is the sort of situation where one tries
to say "fn" or "next" from within a subroutine, where the
corresponding "for" was done before the subroutine was entered.
Once you enter a subroutine, any "for/next context" you had
available to you before entering the subroutine is strictly
unavailable to you until you return from it. Saying "fn"
illegally like this will simply cause your program to push a
garbage value; saying "next" or "clr" will almost certainly
"crash" the machine. Remember, both "for/next" information and
subroutine return-addresses are stored on the return stack.

NUMBERS GREATER THAN 32767

Remember that RPL numbers are normally treated as being in the

range from -32768 to 32767. Add 1 to 32767 and you'll get

-32768. Multiply 10000 by 5 and you'll get -15536. Getting

around this problem, if it is a problem, may take some effort. \omr

"NOT" OF A NONZERO QUANTITY IS NOT ALWAYS ZERO

One sometimes uses the value of a counter of some kind directly
as an argument to "if": if the counter is nonzero, the
if-clause is executed, otherwise it is not. Then one is
sometimes tempted to suppose that by "not"-ing the counter
before doing the "if", the sense of the "if" will be inverted:
this is not the case. "Not" inverts all the bits in the TOS;
the only nonzero quantity it will convert to a zero is -1l.

- 57 -

H S e

Since the RPL Compiler is written in RPL, it compiles itself. As
a result of this compilation, a number of global symbols are left
sitting in the global symbol table which may be of interest to
you. You may of course refer to any of these symbols anywhere in
your program, just as though you had defined them yourself. The
text of each routine is shown here so that if you use an object
destination of "comp" or "final", you can incorporate any routines
you use into your own program. Where compile-~time constants are
shown, they apply to the Version 4 ROMs.

GETINP: A little prompt—-and-get-input routine

3030 rem
3040 * get kb input routine: expects prompt string on stack
3050 * prints prompt, gets input, stops if null response
3060 rem

3070 getinp::print,input,#if,return,end,stop

CVTNUM: A decimal response-decoder routine

3210 rem

3220 * convert number from ascii to binary routine:

3230 * expects non-null string on stack

3240 * pops arg, returns with either:

3250 * <value of cvt'ed number>,0 ...if valid dec # found
3260 * 1 ...otherwise

3270 rem

3280 cvtnum::0cerr,poke0%lforl0*%48-#9>;0<o0r
3290 iflcerr,poke,end+next,cerr,peek#if%.end,return
3300 cerr:#

PUSHST: A push-string-from memory routine

2290 rem

2300 * push string routine: expects ptr to string on stack
2310 * pops arg, returns with string on stack

2320 rem

2330 pushst::#peek;+3peekOfor#peektl-next.return
FNDSYM: A symbol-table-lookup routine

Both FNDSYM and PUTSYM use a data structure called a "symbol table
block". This is composed of 3 pointers, as follows:

offset 0: pointer to the current end of the symbol table

offset 2: pointer to the start of the symbol table

- 58 -

offset 4: pointer to the byte one beyond the end of the area
allocated for the use of the table (this entry is
only needed if symbols will be added to the table)

The symbol tables themselves are arranged as a sequence of strings
and their corresponding values, the values being two-byte
quantities. Note that this makes it very convenient to look up
responses to prompts using FNDSYM, e.d.:

100 askyn: "need instructions? " getinp & yntbl fndsym &
110 if print ™ no good: yes or no? " print askyn goto end
120 # peek + 1 + @ 1 = if instruct & end

5000 yntbl: [yntend,yntbgnl .
5010 yntbgn: ["yes",l1 "no",0 "y",1 "n",0 "help",1] yntend:

4000 rem

4010 ‘find symbol routine: (uses mach lang for hi speed)

4020 * expects string, ptr to sym tbl block on stack

4030 * searches spec'd tbl for stg, ret's with either:

4040 * <ptr to sym tbl entry>,0 ...if found

4050 * <original string> , 1 ...otherwise

4060 rem)
4070 fndsym::#@temp!2+@ N
4080 csylp:#temp@<ifOfsyhlp,sys,if$lfort.nextOreturn,end

4090 csylp,goto,end.lreturn

4100 fsyhlp:(189,5,1,133,2zpa,189,6,1,133,2zpb,189,7,1)

4110 (141)[ctrl(169,127,136,200,49,2zpa,221,7,1,208,14)

4120 (232,232,169,255, 204)[ctr](208 239, 186 157 3, 1 96)

4130 (186,160,0 177,zpa,41 127,24, 105 3 101,zpa)

4140 (157,5,1, 144 3,254,6,1, 96)

4150 ctr:# temp:## :zpa:30: :zpb:31:

*

PUTSYM: A routine to make a new entry in a symbol table

3390 rem

3400 * add sym to sym tbl routine:

3410 * expects value, stg, sym tbl blk ptr on stack
3420 * pops args, returns with 0 if ok, 1 if tbl full
3430 rem

3440 putsym::#temp!#@3T127and+3+;4+€>
3450 if.127and0for.nextlreturn,end
3460 €@;127and0for;;pokel+%.next;;!2+temp€!.0return

N ;

BASPRT:

3440
3450
3460
3470
3480
3490
3500
3510
3520

LOCST &

The

them
litt
samp
tabl

100
110
120
130
140
150
160
1000
1010
1020
1030
1040
1050
1060
1070
1080

- 59 -

A routine for outputting compressed BASIC text

rem

* output basic text routine: expects string on stack

* pops and prints it, decoding kw's as it goes

rem

basprt::1for#128<iflprint,then,baskwt%128-#
iflfor,chslp:1l+#peekl28<if,chslp,goto,end,nextl+then.end
prlp:#peek#l127andlprintl28<ifl+prlp,goto,end.end,next
return

:baskwt:45234:

GBLST: The addresses of the RPL symbol table blocks

addresses of the local and global symbol table blocks are,
selves, available as global symbols. This may seem a

le strange, but consider their utility in the following

le program for printing out the contents of both symbol
es:

khhkkhkkkkhkhkhkkkkkkkhhhkkkkkkhhkk%k

* symbol table display program *
kkkkkkhkhhkkhhkhkhkhkhhhhhkhkkkhkkkkkkkk
rem

"local " print locst outst &
"global " print gblst outst &

stop

rem

* output symbol table routine:

* expects pointer to symbol table block on stack
* pops arg, outputs table, and returns

rem

outst: "symbol table" print 13 1 print # @ % 2 + @
ostlp: ; ; > if # pushst & basprt & ": " print

peek + # 1 + @ # str$ print " ($" print chr$ print
")" print 13 1 print 3 + ostlp goto end . . return

Appendix H: R Quick Refere

- 60 -

et

To push a literal integer, simply state the nnupgeé

To push a symbol value,
To push a character string, enclose it in

state the symbol name. !

double- quates.

RPL Opegators; new drop all
+ add TOS to NOS int 1nterchg bytes in TO=
- subtract TOS from NOS @ fetch word atlfos ad-
* multiply NOS by TOS ! store NOS to 'TOS{adds
/ divide NOS by TOS peek fetch byte at 'BOS addr
\ NWOS gets NOS mod TOS poke poke NOS into EDS addr
str§ cvt TOS to decimal stg & call address on TOS
chr$ cvt TOS to hex stg return return i
print output string on TOS sys sys to addxes%.om To
> true if NOS>TOS goto goto address oni TOS *
< true if NOS<TOS if if TOS<>0 then &
= true if NOS=TOS then begin else-clause;
and AND TOS into NOS end end if-range ¢
or OR TOS into NOS for for TOS toNOS
not invert bits in TOS next end for/next -
push another TOS fn push for/next variablie
; push another NOS clr clear current foér/next
T n-th rnd push randof integgr
¢ swap TOS with NOS get push 1 byte from keybd
$ rotate input input stg from keybd
. drop TOS stop return to BASIC

Commas and spaces are not significant except as padding between

successive numbers, operators, and pseudo-ops.

Enclose inline documentation between pairs of "rem"s, and

put each "rem"™ on a line by itself.

Symbol names must be entirely alphabetic (no embedded numbers).

To

To

To

To

To
To
To

To

define a local symbol, state its name immediately followed by
a colon (no intervening spaces or commas).

define a global symbol, state its name immediately followed
by two colons (no intervening spaces or commas).

"back-~ORG", state a literal numeric address immediately
followed by a colon (no intervening spaces or commas).
restore previous location counter, insert a colon preceded by
neither an alphabetic nor a numeric character.

form an array of single-bvte values, enclose a list of
literal nurbers and/or symbols in parentheses.
form an array of «ouble-byte values, enclos: a list of

iteral numbeis and/or symbols in square brackets.

form & character string directly in wmamory, enclese it in
double-nuotes and enclose that in brackets or parentheses.
allocate memory without specifying coiitents, enclosz tha byte
count desired between angle-brackets within parentheses.

